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Abstract

Estimation and Control with Relative Measurements:

Algorithms and Scaling Laws

by

Prabir Barooah

In this dissertation we examine a class of estimation and control problems

involving interconnected systems. These problems share the common attribute

that, between two component subsystems, noisy measurements of the difference

of their states alone is available. The estimation problem is relevant to sensor and

actuator networks, and the control problem is relevant to coordination in multi-

agent systems. Both classes of problems are defined over a graph that is used to

describe the interconnections.

In the first part of this dissertation, the estimation problem is examined. The

variables correspond to the nodes of a graph, and the measurements of the noisy

difference between pairs of variables correspond to its edges. The task is to com-

pute estimates of the node variables with respect to a reference node. We begin

by designing distributed algorithms to compute the optimal estimate, which refers

to the best linear unbiased estimator (BLUE). We then examine the effect of the

graph structure on the minimum achievable estimation error. Specifically, we ex-

amine how the optimal estimation error of a node variable grows with its distance

from the reference node. A classification of graphs - sparse and dense in 1D,2D,

and 3D – is obtained, which determines the error growth rate: linear, logarithmic,

ix



or bounded.

In the second part of this dissertation, the control of formations over arbitrary

graphs is described. Specifically, we examine how the structure of the intercon-

nection graph affects the stability and sensitivity to measurement noise of the

formation. The vehicular platoon problem is investigated in detail - especially the

decentralized bidirectional control architecture in which each vehicle uses front and

back spacing measurements to compute its control signal. Fundamental limita-

tions in disturbance amplification are established for the symmetric bidirectional

architecture. Then we show that arbitrary small asymmetry in the front and

back controller gains can lead to an order of magnitude improvement in stability

margin.

The underlying theme of our investigations is that of performance degradation

– and possible amelioration – in interconnected systems as the the number of

constituent sub-systems increases.
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Chapter 1

Introduction

Recent years have seen the development and proliferation of devices that are

equipped with embedded sensing, processing, wireless communication, and ac-

tuation capability. As a result, it is becoming possible to monitor and control

processes that are distributed over large geographical areas, by deploying a large

number of such devices and interconnecting them, possibly using wireless com-

munication. The individual devices are called nodes, and the collection of such

devices deployed for sensing tasks is called a sensor network. The epithet network

refers to the interconnection between nodes. The New York Harbor Observing

and Prediction System (NYHOPS) is an example of a sensor network, which con-

sists of a number of sensors connected by a wireless communication network that

monitor salinity, temperature, turbidity, and water levels in the Hudson river es-

tuary [3]. Another example of a sensor network is a group of unmanned aerial

vehicles (UAVs) that can be used to collaboratively detect and track targets [4].

When the devices have actuation capability as well, the network is called an

actuator network. More generally, a network of devices with both sensing and

actuation capability is called a sensor-actuator network. An example of sensor-

1



actuator networks is an irrigation network of water level sensors and gate actuators

that is interconnected over a communication infrastructure [5]. Another exam-

ple of a sensor-actuator network is an Automated Highway System (AHS), in

which a group of autonomous vehicles forms a platoon, in which every vehicle

takes local control action based on on-board sensor readings, so that a constant

inter-vehicular separation is maintained [6, 7].

Successful application of sensor and actuator networks requires tackling novel

estimation and control problems. Typically, the nodes of a sensor and actuator

network are distributed in a large spatial domain. As a result, only local informa-

tion is available to each of the nodes. The nodes have to either estimate global

quantities of interest, or take appropriate control action, based on locally mea-

sured quantities. A special situation that arises in several applications is that a

node can measure relative quantities, from which it has to estimate the absolute

ones. For example, a node maybe able to measure its relative position with respect

to a nearby node but not its position in a global coordinate. The small size, low

cost, and low energy budget of the sensor nodes that make them so attractive for

a myriad of applications preclude these nodes having on-board GPS [8]. Yet, in

order that the user of the network can utilize the data gathered by the sensor net-

work, location information of the data sources is needed. Therefore, nodes need

to estimate their own locations in a global coordinate frame from measurements

of relative positions, which may furthermore be corrupted with high levels of noise

due to the limitations of the measurement techniques.

In certain applications, estimation of global attributes may not be needed, but

the nodes may need to take appropriate control action based solely on relative

measurements in order to achieve a common objective. For example, a team of

UAVs may need to maintain a specific formation, while each UAV can measure
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only its relative position with respect to its nearby UAVs. Each node, i.e., UAV,

is required to employ a decentralized control law that uses only the local, relative

position measurements. Even if the dynamics of individual nodes were otherwise

independent of each other, since the control action taken by one node depends

on its relative position with other nodes, the closed-loop dynamics of the nodes

become coupled with one another.

Fusing noisy measurements obtained from a network of nodes to produce ac-

curate estimates, when the nodes are spatially separated, communicate with one

another through an unreliable wireless medium, and have limited battery lives, is

a challenging task – especially when the size of the network is large. Similarly, de-

vising local control algorithms for individual nodes of an interconnected network

of dynamical systems, such that the whole system achieves a global objective, is

a difficult problem, one for which traditional design and analysis tools of control

theory are not adequate.

This dissertation investigates a few of the estimation and control problems

that are motivated by sensor and actuator network applications. The dissertation

consists of two parts – part I deals with the estimation problems and part II,

with control. In the following sections we describe the problems examined in the

two parts, the challenges in each, and briefly summarize the contributions of this

work in each problem category. The contributions are listed chapter-wise for easy

referral. Each chapter contains, at its end, a discussion of open issues.
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1.1 Part I : Estimation with relative measure-

ments

We examine the problem of estimating n variables x1, x2, . . . xn from noisy

relative measurements of the form

ζu,v = xu − xv + εu,v, u, v ∈ {1, . . . , n}, (1.1)

where εu,v is zero-mean measurement-noise, when one or more variables is assumed

known. This problem arises in several sensor network applications. The variables

are often vector-valued.

A typical example is localization, in which locations of a number of nodes have

to be estimated from relative position measurements of the form (1.1). The need

for localization arises when the nodes cannot measure their positions directly, such

as when they are not equipped with global positioning service (GPS) capability.

However, certain pairs of nodes may be able to measure their relative positions.

For example, two nodes u and v that are located at positions xu and xv on a plane

may be able to measure their relative position xu − xv in a common Cartesian

coordinate frame. The details of acquiring such measurements in practice, using

either on-board wireless devices, or vision based sensors, are described in Sec-

tion 2.1.1. Irrespective of the technique used, the relative position measurement

so obtained will have errors, and hence can be expressed in the form of (1.1).

Apart from localization, there are several problems relevant to sensor and

actuator network applications where variables are to be estimated from noisy

relative measurements of the form (1.1), which include time-synchronization and

motion consensus. In time-synchronization, a network of nodes whose local clocks

progress at varying speeds (skews) and have different offsets from one another

4



need to be synchronized. Two nodes that can communicate with each other can

obtain noisy measurements of the difference between their offsets and ratio of their

skews. The skews and offsets of all the nodes with respect to a common reference

need to be estimated from the noisy relative measurements.

In motion consensus, a group of mobile nodes need to estimate their velocities

or directions with respect to a leader, but each node can only measure its relative

velocity with respect to a few nearby neighbors. In Chapter 2 we will describe

these problems in detail.

Each variable xu to be estimated is called a node variable, which is associated

with the node u. The known node variables are called reference variables. The

ζu,v in (1.1) is called a relative measurement, or sometimes simply measurement.

Node variables in general are vector valued, and the dimension of a node vari-

able is denoted by k. For example, in the localization problem k can be 2 or

3, depending on whether the nodes are located in a 2D or 3D space. Note that

although in general nodes are located in 3D space, sometimes the third dimension

may be irrelevant. This estimation problem can be naturally associated with a

measurement graph G = (V ,E). The vertex set V of the measurement graph

consists of the set of nodes V := {1, . . . , n}, where n is the number of nodes,

while its edge set E consists of all of the ordered pairs of nodes (u, v) such that

a noisy measurement of the form (1.1) between u and v is available. The mea-

surement errors on distinct edges are assumed uncorrelated. The variables that

are known are called reference variables. In practice, none of the variables may

be known, in which case we arbitrarily assign one of the nodes, say o ∈ V , to

be the reference node, and set xo = 0. The measurement graph G is a directed

graph since (u, v) ∈ E implies the measurement ζu,v(= xu − xv + εu,v) is available

while (v, u) ∈ E implies the measurement ζv,u(= xv − xu + εv,u) is, and these two
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measurements are distinct.

1.1.1 Challenges and contributions

The error εe affecting the measurement ζe (where e ∈ E) can be quite large de-

pending on the application and sensing technology. The goal is to obtain accurate

estimates of all the node variables from the noisy measurements. An estimate

of a node variable xu can be obtained by adding the measurements (after ap-

propriately modifying their signs) along a path from u to a reference node. For

example, in Figure 1.1, consider the undirected path P1 := {1, e2, 2, e4, 3, e5, 4}

from the reference node 1 to the node 4. By adding the measurements along the

path, we obtain an estimate of x4:

x̂4 = −ζ2 − ζ4 + ζ5 = −(x2 − x1 + ε2)− (x2 − x3 + ε4) + (x4 − x3 + ε5)

= x4 + (−ε2 − ε4 + ε5)

where x1 vanishes since the reference variable x1 is assumed to be 0. Since the

measurements errors are assumed uncorrelated, the covariance of the estimation

error is the sum of the covariances of the measurement errors ε2, ε4, and ε5. De-

noting by Pe the covariance of the measurement error εe, i.e., Pe := E[εeε
T
e ], the

covariance of the error in the estimate x̂4 is

E[(x̂4 − x4)(x̂4 − x4)
T ] = P2 + P4 + P5.

However, it is possible to construct another estimate of x4 by using measurements

along another path, P2 := {1, e1, 2, e3, 4}, from the reference 1 to 4:

ˆ̂x4 = −ζ1 − ζ3 = −(x1 − x2 − ε1)− (x2 − x4 + ε3) = x4 + ε1 − ε3.

The covariance of the error in the estimate ˆ̂x4 is E[(ˆ̂x4−x4)(ˆ̂x4−x4)
T ] = P1 +P3.

If all the measurement error covariances are equal, the error covariance in the
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Figure 1.1. Estimating node variables by adding relative measurements along a

path. Two different paths, P1 and P2, are shown, that go from 1 to 4.

estimate ˆ̂x4 is smaller than the error covariance in the estimate x̂4. Still, both the

estimates above uses only a subset of the available measurements. It is possible

to construct a more accurate estimate by using all the available measurements.

We will describe in Chapter 2 how the optimal estimate of all the node variables

can be computed by using all the measurements. The optimal estimate refers

to that obtained by the classical best linear unbiased estimator (BLUE) that is

guaranteed to produce the minimum variance estimate among all linear unbiased

estimators [9]. When all the measurements, their associated error covariances, and

information about the measurement graph G are available at a single processor, it

can compute the optimal estimates. Therefore the estimation problem described

above can be solved by first sending all measurements to one particular node,

computing the optimal estimates in that node, and then distributing the estimates

to the individual nodes.

However, this centralized solution is undesirable for several reasons. First,

when wireless communication is used, this method unduly burdens the nodes

close to the central processor. In a large ad-hoc network of wireless nodes, send-

ing all of the measurements requires multi-hop communication, and most of the

data transmitted to the central processor have to be routed through the nodes

close to it. When the nodes operate on batteries with small energy budgets, this
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mode of operation greatly reduces the life of the nodes that carry out most of the

communication. It should be noted that the primary source of energy consump-

tion in wireless sensor networks is communication [10], while much less energy is

consumed for computation [11]. Second, centralized computation is less robust

to node and link failures over time. Multi-hop data transfer to a central node

typically requires the construction of a routing tree rooted at the central node.

Failure of a node in one of the branches of the routing tree effectively cuts off

communication from all of the nodes in the tree branch rooted at the faulty node.

In addition, construction of a routing tree can be challenging when communica-

tion links suffer from temporary failures or when nodes are mobile [12]. Third, a

centralized computation renders the entire network susceptible to a catastrophe if

the central processor fails. This discussion raises a key issue that is investigated

in this dissertation:

Question 1 (distributed estimation): Is it possible to construct
the optimal estimate in a distributed fashion such that the communica-
tion and computation burden is shared equally by all the nodes? If so,
how much communication is required between nodes, and how robust
is the distributed algorithm with respect to communication failures?

By a distributed algorithm we mean an algorithm in which every node carries

out independent computations to estimate its own variable, but is allowed to peri-

odically exchange messages with a set of neighbors that are close enough to it so as

to enable communication. We show that it is indeed possible to design distributed

algorithms to compute optimal estimates that are robust to communication faults.

Our contributions in this regard are briefly outlined below:

1. In Chapter 3 we develop and analyze two distributed algorithms - Jacobi and

OSE - for computing the optimal estimates when the measurement graph
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does not change with time. These algorithms are iterative, and the estimates

produced by the algorithms converge to the optimal ones if inter-node com-

munication is symmetric, i.e., if a node u can receive messages from another

node v, then v can also receive messages from u. The convergence of the

algorithms are proved to be robust to the presence of temporary communi-

cation failures. We relate the convergence rate of the Jacobi algorithm to

the spectral properties of the measurement graph, in particular, to the mini-

mum eigenvalue of a matrix that describes the structure of the measurement

graph.

2. In Chapter 3, we also examine the effect of asymmetric communication,

which refers to the situation where a node u can receive messages from

another node v, but v cannot receive messages from u. Such asymmetry is

especially common in ad-hoc wireless networks on account of inhomogeneous

interference, packet collisions, and inaccurate time synchronization. We

show that in presence of asymmetric communication, the Jacobi algorithm

still converges, but to a sub-optimal estimate.

The convergence rate of the algorithms proposed here can be slow in large

graphs. In addition, the distributed algorithms we have proposed are not appli-

cable when the measurement graph changes with time, e.g., when positions of

mobile nodes are to be estimated and node variables are dynamically evolving in

time. Therefore, in certain situations, a centralized computation, or perhaps a

combination of distributed and centralized computation, may still be required.

Irrespective of which estimation algorithm is used to estimate the node vari-

ables, no linear unbiased estimator can obtain an estimate that is more accurate

than that of the BLUE. This offers a compelling reason to study the error in
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the BLUE, since the accuracy of the BLUE provides a fundamental limit to the

accuracy achievable by any estimation algorithm.

Sensor networks consisting of more than a thousand nodes have already been

developed [13]. Furthermore, it is envisioned that sensor networks consisting

of tens of thousands, if not millions, of nodes are going to be deployed in the

near future [10]. Therefore, understanding limits of performance in large graphs,

particularly limits that are algorithm-independent, is important if such networks

are to be deployed successfully.

For these reasons, we study large graphs with a single reference node and

examine how the error covariance of a node variable’s estimate changes as the

node’s distance from the reference increases. In general, one expects the error to

grow with distance. The growth rate determines the size of the graph that can

be “serviced” by a single reference node. For a given acceptable estimation error,

if the error growth rate is high, either the graph has to be kept small, or more

reference nodes have to introduced.

We show that the structure of the measurement graph determines, to a great

extent, how the estimation error of a node will vary as a function of its distance

from the reference node. Evidence in support of this statement is presented in

Figure 1.2, which shows two graphs and the optimal estimation error variances of

the node variables in each. Both the graphs GA and GB are obtained by placing

nodes randomly in the plane and allowing two nodes to have an edge between

them if and only if their distance is less than a certain value. In case of GA,

nodes are allowed to fall only within the boundary shown in dashed lines. One

can think of GA as a sensor network obtained by placing nodes randomly in an

urban terrain, whereas GB is obtained by placing nodes in a large, level area. Both

graphs have one reference node, placed at (0, 0), the same average node degree
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of 3.2, the same node density of 500 nodes per unit area of the deployed region,

and the same measurement error variance on each edge. The degree of a node is

the number of edges incident on it, therefore same node degree implies the same

number of measurements per variable. For simplicity, we considered the case of

scalar node variables. Computation of the optimal estimation error variances is

described in Chapter 2. From the plot of the estimation error variances, we see

that the graphs have quite distinct estimation error growth rates.

This example motivates the second issue investigated in this dissertation:

Question 2 (error scaling): Can different graphs exhibit vastly dif-
ferent error scaling laws, i.e., the rate at which the optimal estimation
error covariance of a node variable grows as a function of the node’s
distance from the reference? If so, what structural properties of mea-
surement graphs determine these scaling laws, and how do we identify
these properties as well as the scaling laws?

11



−0.5 0 0.5
−0.5

0

0.5

−0.5 0 0.5
−0.5

0

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

2.5

3

3.5

 

 

A
BPSfrag replacements

GA
GB

d(u, o)

σ
2 u
,o

Figure 1.2. Two measurement graphs with very different error scaling laws. The

two graphs, GA and GB are obtained by placing nodes randomly in the plane and

allowing two nodes to have an edge between them if their distance is less than a

certain value. In case of GA, nodes are allowed to fall only within the boundary

shown as dashed lines. Both graphs have one reference node, placed at (0, 0). Both

graphs have the same average node degree, namely 3.2, the same node density,

namely 500 nodes/unit area, and the same measurement error variance, namely

1, on each edge. The bottom plot shows the trend of the optimal estimation

estimation error variances in the two graphs as a function of the Euclidean distance

d(u, o) between the nodes u and o in the plane. The legend A refers to the graph

GA, and B refers to the graph GB.
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The question of error scaling is important to study for a number of reasons.

Given a maximal acceptable error, the number of nodes whose estimation errors

are lower than this level is large if the graph exhibits a slow increase of variance

with distance, but small otherwise. These scaling laws therefore help one design

and deploy large networks for which accurate estimation is possible. In addi-

tion, knowledge of the scaling laws for the optimal estimation error provide an

algorithm-independent limit on the lowest possible error growth, since the optimal

estimator has the lowest estimation error variance among all linear estimators.

We show that estimation error can indeed exhibit vastly different scaling laws

depending on certain structural properties of the graph. Our contributions in this

regard are briefly outlined below:

1. In Chapter 4, we examine infinite measurement graphs, in which the number

of variables and measurements are countably infinite. We show that under

certain conditions, the estimation error covariance of a node variable in a

large finite graph is close to that in an infinite graph. Intuitively, for a

node that resides sufficiently inside a large finite graph, i.e., not close to

the boundary, the graph appears to extend to infinity in all directions. The

results in Chapter 4 provides formal justification for using infinite graphs

as proxies for large finite graphs and also establishes the conditions under

which such an approximation is valid. The advantage of working with infinite

graphs is that boundary conditions in infinite graphs are weaker than in finite

graphs, which make them easier to analyze.

2. As a first step toward answering the error-scaling question, we prove in

Chapter 4 that the covariance of a node’s optimal estimation error is equal

to the matrix-valued effective resistance in an abstract electrical network
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that can be constructed from the measurement graph and measurement

error covariances.

3. In Chapter 5 We obtain a classification of graphs, namely, dense or sparse

in Rd, 1 ≤ d ≤ 3, that determines the error scaling laws. In particular, if

a graph is dense in 1,2, and 3D, then a node variable’s estimation error is

upper bounded by a linear, logarithmic, and bounded function of distance

from the reference. Corresponding lower bounds are obtained if the graph

is sparse in 1, 2 and 3D. The electrical analogy is instrumental in obtaining

the error scaling laws. The sparse graphs are simply the “graphs that can

be drawn in a civilized manner” that were originally introduced by Doyle

and Snell [2].

That the error grows with distance without bound in many graphs is perhaps

not surprising. What is perhaps surprising is that there are graphs in which

the covariance remains below a constant value regardless of the distance.

Analogies with electrical networks are used in [2, 14] to construct elegant

solutions to various graph problems, notably those concerned with random walks.

In [2], questions about random walks in certain infinite graphs are answered by

bounding the effective resistance in those graphs with that in lattices. It turns out

that a similar approach can be used to answer the question of error scaling, once

we establish the analogy between error covariance matrices and matrix-valued

effective resistances.

We note that scaling laws of the estimation error but are not captured by

naive measures of density such as node degree or node and edge density, which

are commonly used in the sensor networks literature [15–17]. Using the dense and

sparse classification obtained in this dissertation, we provide counterexamples that
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expose certain misconceptions that exist in the sensor network literature about

the relationship between graph structure and estimation error. These counterex-

amples show that graphs with the same node degree can exhibit vastly different

error scaling laws.

1.2 Part II : Decentralized control with relative

measurements

In a number of applications, teams of mobile autonomous agents are required

to perform tasks in a collaborative manner. For example, consider a team of

autonomous mobile nodes (UAVs, ground robots, underwater vehicles etc.) that

are required to maintain a particular formation while in motion. The formation is

specified in terms of desired relative positions between every pair of nodes. Each

node is allowed to communicate and measure its relative position with only a

small subset of all the nodes. Each node’s task is to take control actions using

locally available measurements, such that the group still attains its collective goal

of maintaining the desired formation.

Motivation for studying formation control problems arises from their relevance

in a wide spectrum of problems, from military surveillance to swarming in nature.

Maintaining a formation while in motion can reduce aerodynamic drag in air-

crafts [18, 19] and allegedly in birds and spiny lobsters as well [20–22], increase

traffic capacity in highways [6], ensure full coverage of the sensed field in spite

of limited sensing capability of individual nodes [23], and build extra-terrestrial

interferometric imaging system composed of multiple satellites [24].

In all these situations, whether man-made or natural, it is reasonable to as-
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sume that the individual nodes have access to only relative position or velocity

measurements. The problem of formation control using only locally available

measurements falls under the broader category of decentralized coordination prob-

lems [25]. In such problems a group of nodes have to achieve a common objective

without the help of a central authority, while nodes have access to limited, local

information. In this dissertation we use the term decentralized control architecture

to refer to the architectural constraint that each node in an interconnected sys-

tem is allowed to use, as input to its local control algorithm, information that is

available to it or that it collects by communicating with a few nearby neighbors.

This is in contrast to a centralized architecture in which information gathered by

every node is made available to a central controller that computes appropriate

control actions for all the nodes. In an interconnected system of many constituent

nodes that are spatially separated, a decentralized architecture is desirable over

a centralized one since the latter suffers from large communication overhead. In

large interconnected systems in particular, such overhead may make a centralized

architecture well-nigh impossible, making decentralized architectures the only pos-

sibility.

1.2.1 Contributions

In problems of decentralized coordination, including the specific problem of

formation control, the task of the design engineer is to develop control algorithms

for all the nodes of a sensor-actuator network, so that every node implements a

local control law that uses only locally available information, while the network

still attains its collective goal. In a general interconnected system, this leads to a

high degree of complexity. For example, if there are n agents that make up the

interconnected system, in principle n separate control algorithms can be designed,
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one for each agent. However, tools for designing controllers for an interconnected

system which incorporate the constraint of decentralized architecture explicitly

are not well-developed (with a few notable exceptions such as [26–28]). As a

result, the designer is often forced to resort to a somewhat ad-hoc design, based

on trial and error. Frequently, it is arbitrarily decided that every agent will use

the same control algorithm, so that the problem is reduced to that of designing

a single control algorithm. In fact, a large number of control laws examined in

the literature on sensor-actuator network falls into this category [29, 30]. Even

with such simplification, performance analysis of the closed loop system is not

straightforward due to lack of appropriate analysis tools. In summary, a clear

understanding of the effect of interconnection structure on performance, such as

stability and robustness to measurement noise etc., is lacking.

Motivated by these issues, we have examined the problem of decentralized for-

mation control from relative measurements. We outline below the specific aspects

examined and our contributions:

1. In Chapter 6, we study the formation control problem with relative mea-

surements. We quantify the effect of interconnection topology on noise-

sensitivity of the closed loop formation. To focus on the effect of intercon-

nection, simple forms of node dynamics and control laws are assumed. We

examine a control law that uses only relative measurements, which has been

extensively used in the literature.

For this formation control problem, we show that the covariance of the

steady state error (on account of measurement noises) is equal to a matrix-

valued effective resistance in an abstract electrical network that can be con-

structed from the formation graph. This effective resistance was introduced
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earlier in chapter 4, and the effect of graph structure on effective resistance

was studied in Chapter 5. Using the results from those chapters, we show

that the perfomance of the algorithm in presence of noise is quite sensitive

to interconnection topology, and show in which graphs formation control

with small errors is possible and in which graphs it is not possible. The

analogy with effective resistance is used to explain certain observations in

animal formations.

2. The stability margin of the formation is shown to depend on the least stable

eigenvalue of the Dirichlet Laplacian matrix of the interconnection graph.

This matrix, originally encountered in the estimation problem studied in

part I, naturally arises in control and estimation problems of relevance to

interconnected systems. The minimum eigenvalue of the Dirichlet Laplacian

matrix also determines the rate of convergence of many algorithms used in

control and estimation problem (in both continuous and discrete-time set-

tings). This eigenvalue essentially captures the rate of information propa-

gation through the graph, which makes it a key player in the convergence

rate analysis of such algorithms.

In Chapter 6 we obtain a bound on this eigenvalue in terms of the matrix-

valued effective resistance introduced earlier in Chapter 4. It turns out that

effective resistances provide a non-trivial lower bound on this eigenvalue, for

which few tools are otherwise available.

3. In Chapter 7, we examine the the problem of decentralized control of vehic-

ular platoons, in which the control objective is to maintain a constant inter-

vehicular separation. For this problem, we allow more complex controllers

and dynamics, but study a specific interconnection topology. Interest in the
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control of platoons has a long history, dating back at least half a century

(see the 1958 paper [31]).

The particular architecture we study in this chapter is known as symmetric

bidirectional control, in which every vehicle uses measured relative positions

with its two neighboring vehicles, and every vehicle uses the same controller

that is furthermore symmetric with respect to front and back. That is,

the spacing error with respect to the vehicle in front has equal importance

to that with respect to the vehicle behind. The noise sensitivity of this

architecture was investigated earlier in [32]. This chapter answers a few

questions left unanswered in [32].

We show that the stability and noise-sensitivity of this architecture depends

on the number of integrators in the loop transfer function of the plant (ve-

hicle dynamics). If there are more than two integrators, or if the vehicle

dynamics is non-minimum phase, closed-loop will become unstable for a

sufficiently large number of vehicles, no matter how the controller is de-

signed. If there is a single integrator, the steady state spacing errors for a

constant velocity reference will grow without bound as the number of vehi-

cles increases, but for two integrators, the steady state errors will go to 0

for an arbitrary number of vehicles. When there are no integrators in the

controller, the symmetric bidirectional architecture suffers from the “slinky

effect”, namely, the measurement noise and disturbances acting on the ve-

hicles will be amplified without bound as the number of vehicles increases.

This amplification occurs whether the vehicle dynamic model has either one

or two integrators.

4. In order to ameliorate some of the limitations of the symmetric bidirectional

architecture, we propose a methodology to design separate controllers for ev-
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ery vehicle. To handle the complexity of this design problem, which involves

designing 2N separate controllers (where N is the number of vehicles), we

use an alternate modeling framework.

We first derive from first principles a partial differential equation (PDE)

based model of the platoon dynamics, by taking a continuum approxima-

tion of the platoon when the number of vehicles is large. This approach

is motivated by the extensive literature exists on PDE modeling of traffic

flow. We design the control gains by a mistuning-based method, whereby

the gains from the nominal, symmetric design are altered by small amounts.

This mistuning design nevertheless achieves an order of magnitude improve-

ment compared to the symmetric design. In particular, we show that the

least stable eigenvalue of the closed loop platoon dynamic decays to 0 as

O(1/N2) in the symmetric bidirectional case, where N is the number of ve-

hicles. However, the decays is only O(1/N) with the mistuning design, even

with an arbitrarily small amount of mistuning. For large N , this results in

an order of magnitude improvement in the stability margin. The benefits are

seen to be significant even for small values of N . The predictions from the

PDE analysis are corroborated by numerical calculations on the state-space

representation of the platoon dynamics.

In summary of both estimation and control with relative measurements, we

note that the concept of matrix-valued effective resistance for weighted graphs

introduced in this dissertation is seen to be useful in both classes of problems.

The effective resistance was shown to characterize the estimation error of the

optimal estimates in the first part of this dissertation, and the above discussion

shows that it is also relevant in the study of stability margin and noise-sensitivity

of formation control algorithms.
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1.3 Notation

A list of the notation used throughout this dissertation is provided below for

easy referral. Specific notation is introduced where it is first used.
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Table 1.1. Notation

R,N,C Set of real, natural and complex numbers, respectively

Ik identity matrix in R
k×k

Sk+ k × k symmetric positive definite matrices

H real Hilbert space

X ≥ 0 X is a positive semi-definite matrix

X � 0 X is entry-wise non-negative

G graph

V , n or N node set, number of nodes

Vr, nr set of reference nodes, number of reference nodes

E edge set

G(h), Zd h-fuzz of G, d-dimensional square lattice

e ∼ u edge e is either (u, v) or (v, u) for some v

A, Ab incidence matrix, basis incidence matrix

A generalized incidence matrix, A⊗ Ik

L (generalized, or matrix-weighted) graph Laplacian.

D, C (matrix-weighted) degree matrix, adjacency matrix

L (matrix-weighted) Dirichlet Laplacian matrix

M,N (matrix-weighted) basis degree matrix, basis adjacency matrix

L,M,N scalar weighted versions of L ,M,N

Pe covariance of the measurement error on edge e ∈ E
Re matrix resistance on edge e.

Reff
u,v generalized effective resistance between u and v

Σu,o error covariance of x̂u’s BLUE estimate, with o as the reference

j, j flow, flow intensity

i, i current, current intensity
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Part I

Estimation with Relative
Measurements
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Chapter 2

Estimation with relative

measurements: applications and

the optimal estimator

In this chapter we formally describe the problem of estimation from rela-

tive measurements. First, in Section 2.1, we describe the applications – which

mostly come from sensor and actuator networks – where this estimation problem

is relevant. These include sensor localization, camera network calibration, time

synchronization, motion coordination, and mobile robot localization. We discuss

the importance of these problems, and describe in detail, in each case, how the

relative measurements are obtained in practice. Then Section 2.2 formally defines

the optimal estimation problem in terms of a graph, and presents the solution to

the optimal estimation problem.
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2.1 Applications

2.1.1 Sensor network localization

Consider a network of sensor nodes that are deployed in a large geographical

area. Nodes in a sensor network are often not equipped with GPS, since they

are required to be small, cheap, and are expected to operate for a long time with

a battery of limited life [10]. On the other hand, in almost all potential and

realized applications of sensor networks that impose these constraints, such as

habitat monitoring [33], forest fire detection [34], hazardous area and perimeter

surveillance, structural health monitoring [35], military reconnaissance and target

tracking [36], knowledge of the nodes’ locations is critical for the user of the

network. The localization problem consists of estimating node locations from

measurements that the sensors can provide. Although a sensor does not know its

position in a global coordinate system, it can usually measure its position relative

to a set of nearby nodes. These measurements can be obtained in a number of

ways that depend on the sensing technology available and the application domain,

which are described below.

When the sensor nodes in question are equipped with wireless devices, range

measurements can be obtained by a variety of techniques, such as received signal

strength [37] and time of arrival [38] measurements. In certain scenarios, they

can be fitted with acoustic ranging devices [39]. Angle measurements with small

form-factor devices is more challenging, though possible – albeit with limited

accuracy – with switched microstrip antenna arrays [40]. Assuming that each

node has a local compass to measure bearing with respect to a common North,

noisy measurements of ru,v and θu,v, range and bearing, between a pair of sensors
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u and v are converted to noisy measurements of relative position in the x−y plane

as

ζu,v =






ru,v cos θu,v

ru,v sin θu,v




 .

The same procedure is performed for every pair of sensors that can measure their

relative range and bearing. Since the range and bearing measurements have errors,

the relative position ζu,v measured in Cartesian coordinate also has error, which

can be approximated as an ellipsoidal region characterized by a covariance matrix

(See Figure 2.1 for a schematic). Measurement errors between distinct pairs of

nodes can be assumed uncorrelated.

When the sensor nodes have on-board cameras, it is again possible to measure

relative positions between pairs of nodes whose cameras have an opportunity

to view a common object in an overlapping field of view (see Figure 2.2 for a

schematic). Measuring the relative position and orientation between two cameras

involve collaborative information gathering and processing, and is referred to as

camera network calibration. The reader is referred to [42] and references therein

for the details of obtaining such measurements. Typically, when two cameras u

and v take part in calibration and exchange their local calibration parameters,

one of the cameras, say u, estimate the relative position of v w.r.t. itself in it

local coordinate frame, denoted by pv,u (which is either a 2-vector or a 3-vector).

Assuming that the rotation matrix Tuo that specifies the rotation from u’s local

coordinate to the common global coordinate frame attached to the reference node

o is available to u, it can estimate the position of node v w.r.t. itself (i.e., xv−xu)

in a common Cartesian reference frame as

ζvu = Tuopvu.

As long as the errors in the estimated quantities Tou and pvu are additive and
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Figure 2.1. Relative position measurement between pairs of nodes t in a Cartesian

reference frame using range and bearing measurements. Noisy measurements of

range and bearing can be converted to noisy measurements of relative position

as ζu,v = [ru,v cos θu,v, ru,v sin θu,v]
T . The errors in range and bearing result in an

error in relative position. Although this error in general leads to a non-convex

uncertainty region, it can be approximated as an ellipsoidal one (shown as the

patterned region), which is characterized by a measurement error covariance ma-

trix. An example of how the measurement noise covariance can be estimated can

be found in Section 3.3.3.

zero mean, the error in this relative position measurement is also additive and

zero mean. The rotation matrix Tuo can be estimated as the product of the

rotation matrices in a path from o to u in the “graph” that describes relative

calibrations. For example, if (u, v), (v, w), and (w, o) are pairs of nodes such

that their calibration parameters are known, then an estimate of Tuo is Tuo =

TwoTvwTuv.

In both the situations described above, two nearby sensors u and v located at

positions pu and pv, respectively, have access to the measurement

ζu,v = pu − pv + εu,v,∈ R
k
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Figure 2.2. Relative position measurement between two cameras in a common

Cartesian reference frame. The cameras have an overlapping field of view and

have the opportunity to view an object of known size and shape. Each camera

then estimates its orientation with respect to the object and its distance from the

object [41]. By exchanging this information, the two cameras can estimate their

relative position and orientation. See [42] for more details.

where εu,v denotes measurement error. The dimension of the positions and relative

measurements, k, can be either 2 or 3, or even 1 in special cases. The problem of

interest is to use the ζu,v’s to estimate the positions of all the nodes in a common

coordinate system whose origin is fixed arbitrarily at one of the nodes.

We do not consider the problem of localization from range measurements alone

(or angle measurements alone), on which an extensive literature exists [39, 43–50].

When only range measurements are available, the relationship between measure-

ments and variables are non-linear. The difficulty of this non-linear problem is

well-recognized, especially in the presence of noise [47]. Recognizing this diffi-

culty, localization with both range and angle measurements is being examined

recently [51, 52].
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2.1.2 Time synchronization

Consider a set of nodes forming a multi-hop communication network, where

each node has a local clock. Clocks have two sources of inaccuracy in practice:

skew and offset . Skew refers to the rate at which clocks measure time and offset

refers to the difference between the local times of two clocks that have the same

skew. At a particular “global” time t, the measured local time at a clock can be

modeled by α + βt, where α is the offset w.r.t the global time and β is the skew.

Time synchronization consists of estimating the skews and offsets of all the nodes

with respect to a common reference so that every node can read off the global

time from its local clock.

Time synchronization in sensor and actuator networks is important for a num-

ber of reasons. First, sensor nodes need to coordinate and collaborate to achieve

their sensing tasks. In target tracking, for example, the location of a target and its

trajectory is estimated from the reports by the sensor nodes on when they sensed

the target [53]. Second, to operate for a long time with limited battery power,

sensor nodes typically turn off power consuming components for long periods and

wake up at predetermined times [54]. Such sleep-scheduling requires a precise

timing between nodes. Third, communication protocols such Time Division Mul-

tiple Access (TDMA) requires time synchronization for scheduling communication

between wireless devices. Fourth, feedback control in a sensor-actuator network

requires knowledge of a common time [55].

The relative skew and offset between a pair of nodes in a network can be

measured (upto some error) by several methods, which are described below.

Case A: offset without skew: Consider first the case when all clocks have the

same skew but have different offsets. All skews can be assumed to be 1 without loss
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of generality. Suppose that nodes u and v in Figure 2.3 can communicate directly

with each other and have clock offsets tu and tv with respect to a reference clock.

Node u transmits a message, say, at global time t, while transmitter u’s local time

is τtu = t + tu. The receiver v receives this message at a later time, when its

local clock reads τrv = t + tv + δu,v, where δu,v is the random transmission delay

from u to v. The transmission delay in fact arises from several hardware-level

issues at both the transmitter and the receiver, such as the randomness in the

processor load, delay in accessing the medium, and length of the messages. An

extensive and excellent description of these issues can be found in [56]. Some time

later, say at t′ (global time), node v sends a message back to u, when its local

time is τ ′tv = t′ + tv. This message includes the values τrv and τ ′tv in the message

body. Receiver u receives this message at local time τ ′ru = t′ + tu + δuv, where

the delay δvu has the same mean as the delay δuv. Node u can now estimate the

clock offsets as ζu,v = 1
2
[(τ ′ru − τ ′tv)− (τrv − τtu)] = tu − tv + (δvu − δuv)/2. The

error εu,v := (δvu − δuv)/2 has zero mean as long as the delays δuv and δvu have

the same expected value. The measured clock offset between u and v is now

ζu,v = tu − tv + εu,v ∈ R,

which is of the form (1.1). Similarly, the measurement of clock offsets between

nodes v and w is ζv,w = tv − tw + εv,w. Note that for the measurement errors to

be zero mean, the transmission delay between u and v has to have the same mean

as the one between v and u. The task is now to estimate the clock offsets with

respect to the global time, which is defined to be the local time at some reference

node.

Case B: offset and skew: Now let us consider the general case when both clock

skews and offsets are present and need to be estimated. Suppose node u transmits

two messages to v, the first one at (global) time t1 and the second one at (global)
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Figure 2.3. Measurement of differences in local times by bidirectional exchange

time-stamped messages.

time t2. Define T = t2− t1 and denote by αu and αv the clock skews of node u and

v relative to a reference clock. Then the time interval of transmission recorded

by u is m1 := αuT . On the other hand, these two messages are received by node

v at local times αv(t1 + δuv) + tv and αv(t1 + δ′uv) + tv, respectively, where δuv

and δ′uv are two realizations of the random transmission delay from u to v. Node

v can then compute the difference between the local reception times, which is

m2 := αvT (1 + δuv−δ′uv

T
). Node v then sends the measurement m2 back to node u.

From the numbers m1 and m2 available to it, node u can compute the following

log
m2

m1

= log
αv

αu

(1 +
δuv − δ′uv

T
) = logαv − logαu + log(1 +

δuv − δ′uv

T
)

≈ logαv − logαu +
δuv − δ′uv

T
,

under the assumption that δuv − δ′uv << T . Define xu := logαu and xv := logαv

and εuv := δuv−δ′uv

T
. Then the above measurement is equivalent to

ζvu := log
m2

m1
= xv − xu + εvu,

which is of the form (1.1). Note that εuv is zero-mean random variable as long as

δuv and δ′uv have the same expected value. In this way, noisy relative skews can

be measured between pairs of nodes that can exchange time-stamped messages.

To estimate the offset, one first scales the local time of one of the sensors with

the already estimated relative skew, so that in the new time coordinate, the only
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Figure 2.4. RBS: measurement of differences in local times by unidirectional

message exchange [1]. Both u and v receives a message transmitted by source

s at the same time. The local time at u when it received this message is later

broadcast. Upon receiving this message, node v can measure its relative offset

with u. Communication from v to u is not needed. So RBS allows relative offset

measurements even when communication is asymmetric.

difference between the local times is an offset. This offset can then be measured

as described earlier. At the end, it is scaled back to obtain an noisy estimate of

the true offset. This way, both relative skews and offsets are measured that follow

the measurement model (1.1).

All the measurement techniques are, however, susceptible to measurement

errors, especially when wireless communication is involved. Therefore the error

term εe on a measurement ζe has to be paid careful attention to. These errors come

from several hardware-level issues at the both transmitter and receiver, such as

the randomness in the processor load, delay in accessing the medium, and length

of the messages. An extensive description of these issues can be found in [56].

The measurement techniques outlined above require bidirectional message ex-

change between pairs of nodes. Measurements of relative skews and offsets be-

tween a pair of nodes can also be obtained by the RBS(Reference Broadcast

System) method, which does not require bidirectional message exchange between

them but requires the involvement of a third node [1]. The RBS method is ex-
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plained in Figure 2.4 briefly. Node p broadcasts a message marked as a synchro-

nization signal to its neighbors, and since time of propagation of radio waves is

negligible compared to the other sources of delay in transmission and reception,

nodes u and v receive the message at the same global time, say t. From the

time the messages is processed by the receiver antenna and physical layer of the

wireless device to the time it arrives at the application layer of the protocol stack

where the local time can be recorded, there will be a processing delay. Therefore,

the local times at nodes u and v recorded as the time of reception of the same

message are τru := t + tpu + tu and τrv := t + tpv + tv, respectively, where tpu, t
p
v are

receiver-side processing delays at u and v. Node u then sends the recorded receive

time to v (or vice versa), and v can estimate the difference between their clock

offsets:

ζv,u = τrv − τru = tv − tu + (tpv − tpu) = tv − tu + εv,u,

where εv,u := tpv − tpu is zero-mean as long as the processing delays at both the

receivers u and v have the same expected value. It should be stressed that such a

relative measurement is available to v as long as it can receive messages from u,

even if u is unable to receive messages from v.

2.1.3 Motion Consensus

Consider the situation where, in a group consisting of several mobile agents,

each agent wants to determine its velocity with respect to the velocity of a leader

using only measurements of its relative velocities with respect to nearby agents.

These measurements can be obtained, for example, by using vision-based sen-

sors. In particular, two nearby agents u and v moving with velocities ṗu and ṗv,
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respectively, have access to the measurement

ζu,v = ṗu − ṗv + εu,v,

where εu,v denotes measurement error. The task is to determine the velocity

of each agent with respect to the leader based solely on the available relative

velocities between pairs of neighboring agents. The same problem arises when the

agents are trying to estimate their headings with respect to that of a leader using

noisy measurements of relative headings between certain pairs of agents.

A similar situation arises in a group of mobile nodes when pairs of nearby

nodes can measure their relative heading, and each agent wants to estimate its

heading with respect to a leader.

2.1.4 Mobile robot localization

Consider a group of mobile robots such that certain pairs of robots can mea-

sures their relative positions periodically, which can be obtained either by vision-

based techniques [57] or by a stereo-ranging device [58], or by one of the tech-

niques explained in the previous section. Furthermore, each robot can measure

how much it has moved in a given time interval, which can be obtained by dead-

reckoning [59]. The problem is to measure the position of each robot at the current

time based on all the relative position measurement.

Figure 2.5 depicts such a situation schematically. Two types of relative position

measurements are available: (i) those between two distinct robots at the same

time instant: ζut,vt
= xut

− xvt
+ εut,vt

, and (ii) those between the same robot at

two consecutive time instants: ζut+1,ut
= xut+1 − xut

+ εut+1,ut
. In terms of the

estimation problems described above, the robot positions at various times can be
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thought of as variables to be estimated. Since only the initial position of one robot

is assumed known, the number of variables to be estimated grows with time.

t=5
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Figure 2.5. A group of mobile robots. Snapshots of the positions of four robots at

five different time instants are shown schematically. The unknown variables are

the robot positions xu(t), u = 0, 1, . . . , N , where N is the number of robots, at the

time instants t = 1, 2, . . . , T , where T is the current time index, except for the

initial position of robot 1: x1(0), which is taken as the reference. Two types of

relative position measurements are available: (i) those between two distinct robots

at the same time instant - ζut,vt
= xut

−xvt
+εut,vt

, and (ii) those between the same

robot at two consecutive time instants ζut+1,ut
= xut+1 − xut

+ εut+1,ut
. Since only

the initial position of one robot is assumed known, the number of variables to be

estimated grows with time. In the terminology of Section 2.2, the measurement

graph is a function of time.

.
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2.2 Measurement graph and optimal estimation

The estimation problem can be posed in terms of a directed graph G = (V ,E)

whose vertices or nodes represent variables and whose edges represent noisy rel-

ative measurements. That is, for every e ∈ E , a measurement of the following

form is available:

ζe = xu − xv + εe, ∀e = (u, v) ∈ E , u, v ∈ V . (2.1)

where εe is measurement error. The graph G is called the measurement graph. In

the sequel, we use the symbol e to denote not only an edge (u, v) but also the

index of the edge as well, so that e can take values in the set {1, 2, . . . , m}, where

m is the total number of measurements. The covariance of the measurement error

εe is Pe := E[εeε
T
e ]. The measurement error covariances Pe, e ∈ E are assumed

known. The measurement errors on distinct edges are assumed uncorrelated, i.e.,

E[εeε
T
ē ] = 0 if e 6= ē. With relative measurements alone, determining xu is possible

only up to an additive constant. To avoid this ambiguity, we assume that at least

one of the nodes is used as a reference by all of the nodes, and therefore its node

variable can be assumed known. When several node variables are known, we

can have several references. The set of reference nodes is denoted by Vr, where

Vr ⊂ V . An edge e = (u, v) is said to be incident on the nodes u and v. We write

e ∼ u to denote that e is incident on u.

Depending on the application, the measurement graph can vary with time.

In the sensor localization, time synchronization, and motion consensus problems

described earlier, it was implicitly assumed that the variables are fixed and mea-

surements are obtained once. As a result, the measurement graph was time-

invariant. However, in problems such mobile robot localization, new variables

and measurements appear over time, and consequently the measurement graph
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is time-varying. When the application leads to a time-varying graph, we can

sometimes examine the graph obtained by collecting all the variables and mea-

surements over a time-period. In this dissertation we only consider measurement

graphs that are time-invariant.

2.2.1 The optimal estimator (BLUE) and the optimal es-

timates

The task is to estimate all of the unknown node variables from the measure-

ments and the reference variables. We examine the optimal estimate of the node

variables. The optimal estimates refer to the ones obtained by the best linear

unbiased estimator (BLUE), which has the minimum variance among all linear

estimators [9].

Consider a measurement graph G with n nodes and m edges. Recall that k is

the dimension of the node variables. Let X be a vector in Rnk obtained by stacking

together all the node variables, known and unknown, i.e., X := [xT
1 , x

T
2 , . . . , x

T
n ]T .

Define z := [ζT
1 , ζ

T
2 , ...., ζ

T
m]T ∈ Rkm and ε := [εT1 , ε

T
2 , ..., ε

T
m]T ∈ Rkm. This stacking

together of variables allows us to rewrite (2.1) in the following form:

z = ATX + ε, (2.2)

where A is a matrix uniquely determined by the graph. To construct A, we start

by defining the incidence matrix A of the graph G, which is an n×m matrix with

one row per node and one column per edge defined by A := [aue], where aue is

nonzero if and only if the edge e ∈ E is incident on the node u ∈ V [60]. When

nonzero, aue = −1 if the edge e is directed towards u and aue = 1 otherwise. The

matrix A that appears in (2.2) is an expanded version of the incidence matrix A,
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defined by

A := A⊗ Ik, (2.3)

where Ik is the k × k identity matrix and ⊗ denotes the Kronecker product.

Essentially, every entry of A is replaced by a matrix of the form aueIk to construct

the matrix A (see Figure 2.6 for an example). We call A the generalized incidence

matrix of G.

Let nr denote the number of reference variables and nb denote the number of

unknown variables. Let Ab be the submatrix of A that is obtained by removing

those rows from A that correspond to the reference nodes in Vr, so that it contains

only those rows of A that correspond to the nodes in V \ Vr. The matrix Ab

is called the basis incidence matrix [61]. Clearly, the incidence matrix can be

decomposed as

A =






Ab

Ar




 ,

where Ab ∈ Rnb×m and Ar ∈ Rnr×m. Define

Ab := Ab ⊗ Ik, Ar := Ar ⊗ Ik,

where Ab is now termed generalized basis incidence matrix of G with reference

node set Vr.

By partitioning X into a vector x ∈ R
knb containing all the unknown node

variables and another vector xr ∈ Rknr containing all the known reference node

variables: XT = [xT
r ,x

T ]T , we can re-write (2.2) as

z = AT
r xr +AT

b x + ε,

where Ar contains the rows of A corresponding to the reference nodes and Ab con-

tains the rows of A corresponding to the unknown node variables. The equation
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above can be further rewritten as:

z̄ = AT
b x + ε, (2.4)

where z̄ := z−AT
r xr is a known vector.

Estimation of the unknown node variables in the vector x based on the linear

measurement model (2.4) is a classical estimation problem. Since ε is a random

vector with zero mean and covariance matrix

P := E[εεT ], (2.5)

the BLU estimate x̂∗ of x is the solution to the system of linear equations [9]

L x̂∗ = b, (2.6)

where

L := AbP−1AT
b (2.7)

b := AbP−1(z−AT
r xr). (2.8)

Since the measurement errors on two different edges are uncorrelated, P is a

symmetric positive definite block diagonal matrix with the measurement error

covariances along the diagonal: P = diag(P1, P2, . . . , Pm) ∈ Rkm×km, where Pe is

the covariance of the measurement error εe.

The next theorem establishes necessary and sufficient conditions on the mea-

surement graph G so that the optimal estimate of node variables is unique and

shows how the covariance of the estimation error x − x̂∗ relates to the matrices

associated with the graph G. The existence and uniqueness condition is one of

weak connectivity of the directed graph G. A directed graph is weakly connected
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A =












e1 e2 e3 e4 e5

1 1 1 0 0 0

2 −1 −1 1 1 0

3 0 0 0 −1 −1

4 0 0 −1 0 1












A =












e1 e2 e3 e4 e5

1 I I 0 0 0

2 −I −I I I 0

3 0 0 0 −I −I

4 0 0 −I 0 I












P−1 =
















e1 e2 e3 e4 e5

e1 P−1
1

e2 P−1
2

e3 P−1
3

e4 P−1
4

e5 P−1
5
















Ab =









e1 e2 e3 e4 e5

2 −I −I I I 0

3 0 0 0 −I −I

4 0 0 −I 0 I









Figure 2.6. A measurement graph G and a few of its associated matrices: the

incidence matrix A, the generalized incidence matrix A, the generalized basis

incidence matrix Ab, and the edge-covariance matrix P . The row and column

indices of A correspond to node and edge indices, respectively. The single positive

entry in each column of A, namely 1, indicates the start node of the corresponding

edge in G, while the single negative entry −1 indicates the end node.

if it is possible to go from every node to every other node of the graph traversing

the edges, not necessarily respecting the edge directions. An equivalent definition

is that it is weakly connected when there is an undirected path between every pair
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of nodes. An undirected path P from a node p1 to another node pm in a graph G

is an alternating sequence of finite number of nodes and edges that start with p1

and end with pm:

P = {p1, e1, p2, e2, . . . , pl, el, pl+1, . . . , em−1, pm}

such that every edge el in the path is incident on the nodes pl, pl+1 adjacent to it in

the path, and no edges or nodes are repeated. If a graph is not weakly connected,

it can be decomposed into a number of disjoint subgraphs such that every one of

them is weakly connected. These subgraphs are called connected components of

the graph. When every weakly connected component of the measurement graph

has at least one reference node, we say that the graph is weakly connected to Vr,

the set of reference nodes.

We call the pair (G, P ), where G is a measurement graph and P : E → Sk+ is

a function that assigns measurement error covariances to the edges of the graph,

a measurement network.

The next theorem establishes conditions for the well-posed-ness of the BLUE

estimation problem, whose proof is provided in Section 2.3.

Theorem 2.2.1. The matrix L defined in (2.7) for a finite measurement network

(G, P ) is invertible, and therefore BLU estimate x̂∗ exists and is unique, if and only

L = AbP−1AT
b =









2 3 4

2 P−1
1 + P−1

2 + P−1
3 + P−1

4 −P3 −P−1
4

3 −P−1
4 P−1

4 + P−1
5 −P−1

5

4 −P−1
3 −P−1

5 P−1
3 + P−1

5









Figure 2.7. Dirichlet Laplacian for the graph in Figure 2.6.
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Consider the measurement graph G with 4 nodes and 5 edges shown in Fig-

ure 2.6. Node 1 is the reference. The incidence matrix A is therefore a 4× 5

matrix consisting of 0s, 1s, and −1s. The matrix form (2.2) of the measure-

ment equations (1.1) for this graph is





ζ1
ζ2
ζ3
ζ4
ζ5





︸ ︷︷ ︸

z

=

[ I −I 0 0
I −I 0 0
0 I 0 −I
0 I −I 0
0 0 −I I

]

︸ ︷︷ ︸

AT

[
x1
x2
x3
x4

]

︸ ︷︷ ︸

X

+

[ ε1
ε2
ε3
ε4
ε5

]

︸︷︷︸

ε

,

where I is the k × k identity matrix. The 4 node variables in the vector X

are related to the 5 measurements in the vector z by the 4k × 5k matrix A,

the expanded version of the incidence matrix. The measurement model (2.4)

when node 1 is the reference with x1 = 0 is





ζ1
ζ2
ζ3
ζ4
ζ5





︸ ︷︷ ︸

z

=

[
I
I
0
0
0

]

︸︷︷︸

AT
r

0
︸︷︷︸

xr

+

[−I 0 0
−I 0 0
I 0 −I
I −I 0
0 −I I

]

︸ ︷︷ ︸

AT
b

[
x2
x3
x4

]

︸︷︷︸

x

+ε.

The relationship between the 3 unknown node variables in the vector x are

related to the known quantities, that is, measurements z and the reference

variable x1, by the 3k × 5k matrix Ab.

Figure 2.8. An example of a measurement graph, the BLUE estimates and error

covariances.

if the measurement graph G is weakly connected to its reference nodes Vr. When L
is non-singular, the estimation error covariance matrix Σ := E[(x− x̂∗)(x− x̂∗)T ]

is given by

Σ = L−1. �

The covariance matrix Σu,o for the estimation error of a particular node vari-

42



(continued from Figure 2.8) Since the graph G is weakly connected, L is

invertible. The optimal estimate of the vector x, the solution to (2.6), is given

by x̂∗ = L−1AbP−1z̄. From Figure 2.8, it follows that the optimal estimate

x̂∗ when all measurement covariance matrices are equal to the identity matrix

is

[
x̂∗

2
x̂∗

3
x̂∗

4

]

=
[

4I −I −I
−I 2I −I
−I −I 2I

]

︸ ︷︷ ︸

L

−1 [ −I −I 0 0 0
0 0 0 −I −I
0 0 −I 0 I

]

︸ ︷︷ ︸

AbP−1





ζ1
ζ2
ζ3
ζ4
ζ5





︸ ︷︷ ︸

z−AT
r xr

Note the Laplacian-like structure of the matrix L . The covariance matrices

of the overall estimation error and of the individual node-variable errors are

Σ =
1

6

[
3I 3I 3I
3I 7I 5I
3I 5I 7I

]

︸ ︷︷ ︸

L−1

, Σ2 =
1

2
I, Σ3 =

7

6
I, Σ4 =

7

6
I.

The covariance of the estimation error of node u is simply the (u−1)th diagonal

block of the covariance matrix Σ.

Figure 2.9. Figure 2.8 contd.

able xu appears in the corresponding k × k diagonal block of Σ. A measurement

graph, along with the corresponding measurement equations (2.2) and (2.4) and

the node variable estimates computed from (2.6), is shown in figure 2.8.

Weak connectivity of the measurement graph is required not only for the ex-

istence of the optimal estimator of a node variable xu, but also for the existence

of any unbiased estimator of xu. Before stating it formally, we emphasize the

distinction between an estimate and an estimator. Recall that a linear estimate

of a node variable is a linear combination of the measurements ζe, e ∈ E specified

by a set of coefficient matrices. In particular, an estimate x̂u of a node variable
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xu is given by

x̂u =
∑

e∈E
CT

e ζe, (2.9)

where the function C : E → Rk×k specifies the coefficients of the measurements.

In the equation above, and in the sequel, for a function f with the edge set E as

the domain, we use fe to denote the value of the function at an edge e ∈ E . We

call the function C the estimator of xu. It should be stressed that the edge set

E is implicitly assumed to be finite. Otherwise the summation in (2.9) will be a

series and more care has to be exercised in defining an estimate or an estimator.

Estimation in infinite graphs is considered in Chapter 4.

Now we formally state the result on the importance of weak connectivity.

Lemma 2.2.1. For a finite measurement graph G = (V ,E) with a reference node

Vr ⊂ V , there exists an unbiased estimator for every node variable xu, u ∈ V \Vr

if and only if G is weakly connected to Vr. �

To prove this result, we will need the concept of a flow in a graph. A generalized

flow from node u ∈ V to node v ∈ V with intensity j ∈ Rk×k is an edge-function

j : E → R
k×k such that

∑

(p,q)∈E

p=p̄

jp,q −
∑

(q,p)∈E
p=p̄

jq,p =







j p̄ = u

−j p̄ = v

0 otherwise

∀p̄ ∈ V . (2.10)

The reason flows are useful in the analysis of the estimation problem under

study is that they precisely characterize unbiased estimators, which is stated in

the next lemma. The proof of this lemma is provided in Section 2.3.
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Lemma 2.2.2 (Unbiased Estimator). In a finite measurement network (G, P )

with a reference node o ∈ V , i.e., Vr = {o}, an edge function j is a linear unbiased

estimator of a node variable xu if and only if j is a flow of intensity Ik from node

u to the reference node o. In this case, the covariance of the error in the estimate

x̂u is given by

E[(x− x̂u)(x− x̂u)
T ] =

∑

e∈E
jT
e Peje. �

The proof of Lemma 2.2.1, which is based on the result above, is presented in

Section 2.3. Finally, the next proposition formally relates the unbiased estimators

of xu and the best linear unbiased estimator of xu.

Proposition 2.2.1. In a finite measurement network (G, P ) with a a reference

node o ∈ V , for every node variable xu, the best linear unbiased estimator C is

the flow C : E → Rk×k of intensity Ik from u to o that minimizes the quadratic

cost

trace(
∑

e∈E
jT
e Peje)

among all flows j of intensity Ik from u to o. �

The proof follows from the characterization of the BLUE as the unbiased

estimator that minimizes the sum of the variances of the estimation errors [62]

and the preceding discussion.

2.2.2 Dirichlet Laplacian and BLUE

The matrix L has a structure similar to the Laplacian matrix L of the graph

G, which is defined as L := AAT [60]. To explore this connection, we first con-

sider a matrix-weighted graph G whose edges have matrix-valued weights (that

are symmetric positive definite) associated with them, specified by a function
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W : E → S
k+. The symbol S

k+ denotes the set of k × k symmetric positive defi-

nite matrices. For a matrix-weighted graph G with weight function W , we define

the generalized, or matrix- weighted, graph Laplacian as

L := AWAT ∈ R
kn×kn, (2.11)

where A is the generalized incidence matrix of G andW is a block-diagonal matrix

with edge weights on its diagonal: W = diag(W1, . . . ,Wm).

Expanding (2.11), we get

L = AWAT =






Ab

Ar




W

[

AT
b AT

r

]

=






AbWAT
b AbWAT

r

ArWAT
b ArWAT

r




 .

For a measurement graph if we assign edge weights as the inverses of measurement

error covariances, i.e., We = P−1
e for every e ∈ E , then W = P −1 and L =

AbP−1AT
b . So L is a principal submatrix of the generalized Laplacian L . We

call L the generalized Dirichlet Laplacian or the generalized grounded Laplacian

of the matrix-weighted graph G with weight function W and boundary Vr. We

will frequently refer to AbP−1AT
b (and AP−1AT ) as the Dirichlet Laplacian (and

Laplacian) for the network (G, P ).

Principal submatrices of the usual graph Laplacian matrix are called Dirichlet

Laplacians since they appear in the numerical solution of PDEs with Dirichlet

boundary conditions. They also appear in electrical network analysis when the

potential of one or more of the nodes is fixed at 0, hence they are also called

grounded Laplacians. In fact, we will shortly see that L plays a key role in a

abstract, generalized electrical network with matrix valued currents and voltages.
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We list below a few properties of the generalized Laplacian and the incidence

matrix that will be used in establishing certain results later in the paper.

Proposition 2.2.2. Let G be a measurement graph, A its incidence matrix and

Ab be the basis incidence matrix constructed by removing the rows corresponding

to the reference nodes from A. The, the following statements are true:

1. If G is weakly connected and has n nodes, then the rank of A is n− 1, and

1TA = 0, where 1 ∈ Rn is a vector of all 1’s.

2. The basis incidence matrix Ab has full row rank if and only if every weakly

connected component of the graph has at least one reference node.

3. L has at least k zero eigenvalues. It has exactly k zero eigenvalues if and

only if G is weakly connected.

4. L × (1⊗ Ik) = 0. �

The last two statements are direct consequences of the first two, whose proofs

are contained in the proof of Theorem 2.2.1.

Remark 2.2.1 (Role of edge directions). Note that the graph Laplacian L = AAT

does not depend on the directions of the edges [60]. Since P is also independent

of the edge-directions, it follows from the definition (2.11) that the generalized

Laplacian L is also independent of the edge directions chosen. Clearly, the matrix

L , being a submatrix of L , shares this property, too. Since the BLUE error

covariances are given by the inverse of L (cf. Theorem 2.2.1), they do not depend

on the edge directions. Therefore, as long as we are interested only in the BLUE

covariances, we can regard the measurement graph as undirected. However, the

optimal estimator of a node variable does depend on the edge directions. �
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2.2.3 Role of parallel edges

Two edges e1 and e2 are said to be parallel if they are incident on the same set

of nodes (irrespective of the direction of the edges). Parallel edges may be present

in a measurement graph, e.g., when a measurement ζu,v is obtained by one of

the nodes between u and v, and the measurement ζv,u is obtained by the other

node. Such a situation can occur when two nodes measure each other’s relative

position by measuring range and angle, as described in Section 2.1.1. Parallel

edges may also appear when multiple relative measurements between the same

pair of nodes are obtained over time, and all these measurements are used to

define the measurement graph.

However, a measurement network with parallel edges can be reduced to one

without parallel edges, by replacing relative measurements on parallel edges with

a single measurement of appropriate covariance, so that the BLU estimates and

their associated error covariances don’t change. Imagine there are ` parallel

edges e1, e2, . . . e` between a pair of nodes u and v, with associated measurements

ζ1, . . . , ζ`, and covariances P1, P2, . . . P`. We can replace these ` parallel edges

with a single edge e′ := (u, v) with associated with associated measurement ζe

and measurement error covariance Pe′ that are given by

P−1
e′ := P−1

1 + · · ·+ P−1
` ,

ζe′ := (P−1
1 + · · ·+ P−1

` )−1(s(1, e′)P−1
1 ζ1 + · · ·+ s(`, e′)P−1

` ζ`),

(2.12)

where s(e, e′) = +1 if the orientations of e and e′ are the same, and s(e, e′) = −1

if the orientations are opposite. Two parallel edges e1 and e2 are said to have

the same orientation if both are directed away from the same node, otherwise

their orientations are opposite. Replacing a set of parallel edges by a single edge

according to this procedure leaves the BLU estimates and the BLUE covariances
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of all the node variables invariant. One could prove this fact by straightforward

but tedious manipulations; so a formal proof is omitted. Therefore, without any

loss of generality, we can assume that a measurement graph does not contain any

parallel edges.

2.3 Proofs

Proof of Theorem 2.2.1. We will first consider the case when G has only one con-

nected component and prove that L is invertible if and only if the graph has at

least one reference node. When G is weakly connected, the rank of its incidence

matrix rank(A) = n − 1, where n is the number of nodes [61]. If G has no refer-

ence nodes, then A = Ab, which makes Ab, and thereby Ab, rank deficient. Then

L = AbP−1Ab is singular. On the other hand, any sub matrix obtained from A by

removing one or more rows has full row rank [61]. Any smaller submatrix must

obviously be full row rank. Now if the weakly connected graph G has at least

one reference node, Ab, is full row rank by the previous argument, and so is Ab.

To prove that L is non-singular, assume that ∃x 6= 0 s.t. xT (AbP−1AT
b )x = 0.

Since P is symmetric positive definite, this implies P −1/2AT
b x = 0, where P−1/2

is the unique positive definite square root of P −1. Therefore AT
b x = 0, which is

a contradiction. This proves that when G is weakly connected, L is invertible if

and only if there is at least one reference node.

To examine the situation when G has more than one weakly connected compo-

nents, assume w.l.o.g. that it has two components G1 = (V1,E1) and G2 =

(V2,E2). Since the two components cannot have an edge or a node in common,
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the generalized incidence matrix A of G can be written as

A =






A1 0

0 A2




 ,

where Ai is the generalized incidence matrix of the component Gi. Similarly,

Ab =






A1,b 0

0 A2,b




 ,

where Ai,b correspond to the component Gi. As a result the matrix L = AbP−1AT
b

for G can be written as

L =






A1,bP−1
1 AT

1,b 0

0 A2,bP−1
2 AT

2,b




 ,

where P−1
i contains all the edge-covariance matrices belonging to the edges in Gi.

If one of the components, say G1 does not have a reference node, then A1,b = A1

and so A1,bP−1
1 AT

1,b is singular, which makes L singular. If both components have

at least one reference node each, each of the diagonal blocks of L is non-singular,

which makes L invertible. This proves the theorem.

Proof of Lemma 2.2.2. By definition, a linear estimate of the node variable xu in

the finite network (G, P ) is given by

x̂u =
∑

e∈E
jT
e ζe

for some matrices {je, e ∈ E}. Therefore,

x̂u =
∑

(p,q)∈E
jT
p,q(xp − xq + εp,q) (2.13)
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which implies that

E[x̂u] =
∑

(p,q)∈E
jT
p,q(xp − xq)

=
∑

(p,q)∈E
jT
p,qxp −

∑

(p,q)∈E
jT
p,qxq

=
∑

p̄∈V

∑

(p,q)∈E
p=p̄

jT
p,qxp −

∑

q̄∈V

∑

(p,q)∈E
q=q̄

jT
p,qxq

= (
∑

p̄∈V
xT

p̄

∑

(p,q)∈E
p=p̄

jp,q)
T − (

∑

q̄∈V
xq̄

∑

(p,q)∈E
q=q̄

jp,q)
T . (2.14)

If j is a flow with intensity Ik from u to o, using (2.10) we conclude that the first

term above can be expressed as

(
∑

p̄∈V
xT

p̄

∑

(p,q)∈E
p=p̄

jp,q)
T = (xu − xo)

T + (
∑

p̄∈V
xT

p̄

∑

(q,p)∈E
p=p̄

jq,p)
T

= (xu − xo)
T + (

∑

q̄∈V
xq̄

∑

(p,q)∈E
q=q̄

jp,q)
T .

Combining this with (2.14), we get E[x̂u] = (xu−xo) = xu, because xo = 0, which

proves sufficiency.

If j is not a flow, there is at least one node, say r ∈ V , where the flow condi-

tion (2.10) is violated. Assume for the moment that r is neither u nor o. We

rewrite (2.13) as

E[x̂u] =
∑

(p,q)∈E
p=r

jT
p,q(xp − xq) +

∑

(p,q)∈E
q=r

jT
p,q(xp − xq) + T

where T denotes the remaining terms of the sum and does not involve xr,

= (
∑

(p,q)∈E
p=r

jp,q −
∑

(p,q)∈E
q=r

jp,q)
Txr + T2,
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where the terms constituting T2 also do not involve xr. Since the flow condi-

tion (2.10) is not satisfied at r, the coefficient of xr above is not zero and so x̂u is

biased. The same proof technique can be applied to the case when r is either u

or o, which proves necessity.

If j is an unbiased estimators of xu in the finite network (G, P ), the covariance of

the estimation error is

E[(xu − x̂u)(xu − x̂u)
T ] = E[(

|E |
∑

l=1

jT
l εl)(

|E |
∑

`=1

jT
` ε`)

T ]

Σu,o =

|E |
∑

l=1

jT
l E[εlε

T
l ]jl =

|E |
∑

l=1

jT
l Pljl,

where the second inequality was obtained by using the fact that the measurement

errors on different edges are uncorrelated. This proves the second statement of

the lemma.

Now we are ready to prove Lemma 2.2.1.

Proof of Lemma 2.2.1. Without loss of generality, assume that there is only one

reference node: Vr = {o}. If G is weakly connected, we can construct an undi-

rected path P from u to o and define an edge-function j as follows:

jpath
e =







j e ∈ P, ~e = ~P

−j e ∈ P, ~e 6= ~P

0 e /∈ P

where ~e = ~P means that the orientation of the edge e is the same as the orientation

of the path P, and ~e 6= ~P means the orientations are opposite. The orientation of

an edge e in a path P = . . . , p, e, q, . . . is said to be the same as the orientation

of the path if e = (p, q). If e = (q, p), the orientation of the edge is opposite to
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that of the path. It is straightforward to see that j is a flow of intensity Ik from

u to o, and therefore by Lemma 2.2.2, j is an unbiased estimator of xu.

If G is not weakly connected, it can be decomposed into a number of disjoint

subgraphs such that every one of them is weakly connected. These subgraphs

are called weakly connected components of G. Pick such a weakly connected

component that does not contain the node o, call it G1 = (V1,E1), and pick an

arbitrary node u in G1. By contradiction, assume that there exists a flow of matrix

intensity Ik from u to o. Let A1 be the generalized incidence matrix of G1. Let G1

consist of N nodes and M edges, and without loss of generality, let u be numbered

as node 1. Define J := [jT
1 , j

T
2 , . . . , j

T
M ]T ∈ RkM×k as the tall matrix of the flows

on the edges in the component G1 and ω = [Ik, 0, . . . , 0]T ∈ RkN×k with Ik in the

1st k× k block position, and 0 everywhere else. Then the conservation law (2.10)

can now be expressed compactly as

A1J = ω. (2.15)

Now define 1 := [Ik, Ik . . . , Ik]
T ∈ RkN×k, and multiply both sides of the equation

above by 1T , which is equivalent to adding all the rows. It follows from Proposi-

tion 2.2.2 that the sum of each row in A1 is 0. Therefore we obtain the following

contradiction

1TA1J = 1T
ω ⇒ 0 = Ik. (2.16)

Thus no flow of intensity Ik from u to o is possible. The result then follows from

Lemma 2.2.2.
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Chapter 3

Distributed algorithms for

optimal estimation

In this chapter we answer the distributed algorithm question raised in Sec-

tion 1.1, concerning computation of the optimal estimates of the node variables in

a distributed way. We show that this objective is indeed feasible, and present two

distributed asynchronous algorithms that achieve this goal. The algorithms are

iterative, whereby every node starts with an arbitrary initial guess for its variable

and successively improves its estimate by using two pieces of local information:

the measurements available to it as well as the estimates of the nearby nodes. The

latter can be obtained by communicating with the nearby nodes. The algorithms

are guaranteed to converge to the optimal estimate when the number of iterations

goes to infinity, as long as certain conditions of the inter-node communication are

satisfied. The second algorithm is designed to have a faster convergence rate com-

pared to the first. Both algorithms are robust to link failures, and they converge

even in the presence of temporary faults of nodes and communication links.
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Both algorithms require each node to have embedded communication and com-

putation capability. As a result, these algorithms are not applicable to the the

case when some of the nodes in the measurement graph are not physical enti-

ties. An example of such an application is the mobile robot localization problem

discussed in Section 2.1.4. Moreover, the measurement graph is assumed fixed

in time. In some applications, such as the sensor network localization problem

discussed in Section 2.1.1, this will mean the node are static. In other applica-

tions, a time-invariant measurement graph does not preclude motion of the nodes.

For example, in both the time-synchronization and heading estimation problems

discussed in Section 2.1.2 and Section 2.1.3, nodes can be moving without intro-

ducing any time variation in the measurement graph. In this chapter we only

consider measurement graphs that are time-invariant.

Organization: Section 3.1 describes the constraints on computation and inter-

node communication that an algorithm must abide by in order to qualify as a dis-

tributed algorithm. In Section 3.3 we describe the Jacobi algorithm and analyze it

properties, including correctness, convergence rate, computation-communication

trade-off and the effect of asymmetry in inter-node communication. Section 3.4

describes the OSE algorithm and analyzes its convergence properties. In sec-

tion 3.5 we specifically discuss the effects of asymmetric communication. The

chapter concludes with a discussion of open issues in Section 3.6.

3.1 Problem statement

Since the optimal estimate is the solution the system of linear equations (2.6):

L x̂ = b, we seek iterative algorithms to compute its solution. We assume that

every node u ∈ V is a physical entity with a unique identifier that has the
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capability to carry out computations and communicate information with a set

of nearby nodes. We take the index of a node (nodes are indexed from 1 through

n, where n is the number of nodes) as the unique identifier of the node. An

algorithm qualifies as a distributed algorithm only if it satisfies the constraint

that every node computes its own estimate and the information needed to carry

out the computation is obtained by communication with its nearby nodes.

In order to describe the phrase “communication with nearby nodes” precisely,

we define the communication graph Gc = (V ,E c) associated with the measure-

ment graph G = (V ,E), which is a directed graph that consists of the same node

set as the measurement graph but with a (typically) different edge set, whose

edge directions determine which nodes can receive information from which other

nodes. In particular, a node u can receive information from another node v if

and only if there is an edge (v, u) ∈ E c. Note that when an edge (v, u) ex-

ists in the communication graph, the reverse edge (u, v) may not exist, in which

case u can receive messages from v but not vice versa. Such asymmetry is quite

common in wireless communication [63]. Asymmetry in communication could

be caused, especially in ad-hoc wireless networks, due to inhomogeneous inter-

ference, packet collisions, and imperfect sleep scheduling arising from inaccurate

time-synchronization. Communication between two nodes u and v is called sym-

metric if and only if both (u, v) and (v, u) belong to E c.

One has to keep in mind, though, that in certain situations, a relative mea-

surement between a pair of nodes can be obtained only when the communication

between them is symmetric. The relative clock offset measurement technique

described in Section 2.1.2 (case A.) is one such example. However, there are

situations when relative measurements can be obtained without symmetric com-

munication. The relative positions obtained from range and bearing measure-

56



ments described in Section 2.1.1, and relative clock offset measurements by the

RBS method of [1], described in Section 2.1.2, are such examples. Therefore it

is important to allow the possibility of asymmetric communication in designing

distributed algorithms.

Now we can describe precisely what we mean by a distributed algorithm. An

iterative algorithm devised to compute the optimal estimate x̂∗ is called distributed

if it satisfies the following constraints:

Constraint 3.1 (Distributed). 1. Every node has knowledge of the relative mea-

surements (and associated error covariances) corresponding to the edges in

the measurement graph that are incident on itself.

2. At every iteration, each node is allowed to receive a message from the nodes

in its 1-hop in-neighborhood in the communication graph, N c
u , which is de-

fined as:

N c
u = {v ∈ V , (v, u) ∈ E c}. (3.1)

3. Each node is allowed to perform computations involving only variables that

are local to the node or that were previously obtained.

The following assumptions are assumed to hold for every distributed algorithm

considered in this chapter.

Assumption 3.1.1. 1. The measurement graph G = (V ,E) is weakly con-

nected with respect to its reference nodes and does not contain parallel

edges.

2. The communication graph Gc = (V ,E c) is such that for every pair of nodes

that have a measurement edge between them, there is at least one commu-

nication edge between them.
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3. If there is no measurement edge between a pair of nodes, then there is no

communication edge between them, and no communication edge is directed

toward a reference node.

4. Every node that is not a reference node has at least one communication edge

directed toward it. �

The assumption of not having parallel edges is not restrictive because multiple

measurements between the same pair of nodes can be combined into a single

measurement (see Section 2.2.3). The second condition ensures that the nodes

employing the algorithm will be able to use all the available measurements. The

third condition clarifies that the communication graph is used only to model the

information exchange that occurs during the execution of the algorithm. The

fourth condition ensures that every node (other than a reference node) is able to

receive messages from at least one neighbor, since otherwise it cannot update its

estimate.

The communication graph Gc is called symmetric if whenever (u, v) ∈ E c,

where u, v are not reference nodes, we also have (v, u) ∈ E c. If there is at least one

communication edge (u, v) ∈ E c such that (v, u) /∈ E c, then the communication

graph Gc is called asymmetric. Recall that an edge e (in G or Gc) between two

nodes u and v is said to be incident on both the nodes u and v, which is denoted

by e ∼ u and e ∼ v, respectively, whether the edge is directed from u to v or

otherwise.

Figure 3.1 shows a measurement graph G and an associated communication

graph Gc. The lack of communication from 2 to 1 does not introduce asymmetry

since the reference node 1 does not use any information from its neighbors (see

Assumption 3.1.1). According to our terminology the communication graph in

58



2 1e1e3

e4e5

3

4

(a) G

2 1

3

4
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Figure 3.1. A measurement graph and a symmetric communication graph associ-

ated with it. Though there is no communication edge from 2 to 1, that is not a

cause of asymmetry by Assumption 3.1.1.

2 1e1e3

e4e5
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4

(a) G

2 1

3

4

(b) Gc

Figure 3.2. A measurement graph and an asymmetric communication graph asso-

ciated with it. The asymmetry in the communication graph comes from the lack

of a communication edge from node 3 to node 4.

the figure is therefore symmetric. Figure 3.2 shows another example of a mea-

surement graph and a communication graph, where the communication graph is

now asymmetric. The asymmetry comes from the lack of a communication edge

(3, 4), which means that node 3 can receive broadcasts from 4 but not the other

way around.

Given an iterative algorithm, let x̂(i) = [x̂
(i)T
2 , . . . , x̂

(i)T
nb

]T , where nb is the num-

ber of non-reference nodes, be the vector of node estimates after the ith iteration

of the algorithm has been completed. One iteration is said to be complete when

59



all nodes update their estimate once. The algorithms’ error at the ith iteration

with respect to the BLU estimate x̂∗ is

e∗(i) :=x̂(i) − x̂∗. (3.2)

The algorithm is said to be correct if the error e(i) → 0 as i→∞ for every initial

condition x̂(0). We also define the error ratio at the ith iteration

ε(i) :=
‖x̂(i) − x̂∗‖
‖x̂(0) − x̂∗‖ . (3.3)

The number of iterations i required so that the error ratio ε(i) attains a value

lower than ε, denoted by niter(ε), is used as a measure of the convergence rate of

the algorithm. The error ratio is particularly useful in comparing the convergence

rate of two algorithms that start with the same initial estimates.

3.2 Contribution and prior work

In this chapter, we propose two distributed algorithms, namely, the Jacobi

algorithm and the overlapping subgraph estimator (OSE) algorithm, to compute

the BLU estimates of the node variables from the relative measurements. The

algorithms are distributed in the sense that they satisfy Constraint 3.1. Parts of

the this chapter’s material have been reported in the papers [64–68]. The results

of this chapter are summarized below.

1. We show that the Jacobi algorithm converge to the optimal estimate when

the communication graph is symmetric. When the communication graph

has asymmetry, then the algorithm converges to a sub-optimal estimate as

long as certain conditions on the communication graph are satisfied. These
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conditions have to do with the flow of information from the reference nodes

to rest of the nodes.

The number of iterations required by the the Jacobi algorithm to make the

error ratio lower than a specified value is established in terms of algebraic

properties of the graph.

The Jacobi algorithms is proved to be robust to temporary node and commu-

nication failures and to asynchronous computation. That is, the estimates

produced by the algorithm when time goes to infinity does not change even

if the nodes communicate and update their estimates in an asynchronous

manner, and some nodes and communication edges fail temporarily. A spe-

cial structure of the measurement error covariance matrices were assumed

(described in Assumption 3.3.1).

2. The OSE algorithm is proved to converge to the optimal estimate when

the communication graph is symmetric. The algorithm is also shown to

be robust to temporary communication-link and node failures, under the

assumption of a special structure of covariance matrices.

3. We compare the energy consumption of three algorithms, Jacobi, EPA [69],

and OSE, when nodes exchange information through wireless communica-

tion. Through simulations with a simple yet realistic model of energy con-

sumption, we see that the OSE algorithm can drastically cut down the total

energy expended to reach within a specified level of the optimal estimates.

4. We also show that in the presence of communication asymmetry, it is im-

possible to design a distributed algorithm satisfying the Constraint 3.1.
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Convergence results for both the algorithms with asynchronous communication

have been obtained under the assumption that the measurement error covariances

have a special structure (described in Assumption 3.3.1). Simulations indicate

that the algorithms converge even when the assumption is violated, but a proof

is still lacking.

Prior work: Although the problem of localization has been extensively studied

in the last 10 years, fueled by the explosive interest in sensor networks, most of the

work on the topic has concentrated on estimating node locations from range mea-

surements alone, and a few on estimating node locations from angle measurements

alone [39, 43–50]. Estimating locations from both range and angle measurements,

which is equivalent to localization from relative position measurements, have at-

tracted attention only recently (see [52] and [51]). However, distributed algorithms

to compute the BLUE location estimates have not investigated.

There is a rich literature on time-synchronization in a network of processors.

The NTP(Network Time Protocol) is a forerunner in time synchronization pro-

tocols developed for the wired Internet, but is less desirable for wireless sensor

networks due to its high energy consumption [70]. Many protocols have been

developed in recent year for wireless networks, which include the RBS(Reference

Broadcast System) [1], the TPSN(Timing-sync Protocol for Sensor Networks) [71],

and the FTSP(The Flooding Time Synchronization Protocol) [56], to name a few.

However, none of these synchronization protocols attempt to compute the opti-

mal estimates of clock skews and offsets; rather they use a single path from a

node to the reference to estimate those node variables. For example, in TPSN

protocol [71], nodes close to a root node, called level 1 nodes, synchronize their

clocks to the root node’s clock by using relative offset measurements. The nodes

close to level 1 nodes, called level 2 nodes, in turn synchronize their clocks to the
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level 1 nodes’ clocks, and so on until all the nodes are synchronized. See [72] for a

review of time synchronization protocols for sensor networks. To the best of our

knowledge, Karp et al. [73] were the first to allude to a distributed algorithm for

computing the optimal clock offset estimates. However, the algorithm was merely

suggested, not analyzed in [73]. A distributed algorithm was proposed in [74] later

for estimating time-offsets from all available relative offset measurements.

The EPA algorithm proposed by Delouille et al. [69], though for a completely

different application, can also be used to compute the BLU estimates in an dis-

tributed manner. We compare the Jacobi and OSE algorithms to the EPA algo-

rithm through simulations in Sections 3.3.3 and 3.4.1.

Since the optimal estimate is a solution of a system of linear equations (2.6), we

exploit iterative techniques of solving linear equations, which has a long and rich

history [75]. In fact, the algorithms proposed by both Karp et al. [73] and Girid-

har and Kumar [74] for distributed time synchronization are based on the Jacobi

method of iteratively solving linear equations [75]. Our first algorithm for comput-

ing the optimal estimates from relative measurements is also based on the Jacobi

method. In that respect, the Jacobi algorithm proposed in this dissertation is

not novel. However, we provide a thorough analysis of the effect of asymmetric

communication on the Jacobi algorithm’s convergence properties. In contrast, in

the algorithm proposed by Giridhar and Kumar [74] for estimating time-offsets,

the effect of such asymmetry was overlooked. The EPA algorithm proposed in [69]

is a block-Jacobi method [75] of solving linear equations.

Apart from the Jacobi method, there are many other iterative methods of solv-

ing linear equations, some of them having a faster convergence rate, such as Gauss

– Siedel, SOR, and conjugate gradient methods [75]. However, not all of these

methods are applicable in devising distributed algorithms, since the information
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required by these algorithms to carry out the computations may demand an un-

acceptable level of communication between nodes or the interference by a central

authority. For example, the Gauss-Siedel method requires that the variables be

updated in a specific sequence. In a network of devices that exchange information

with one another thorough wireless communication, ensuring such an order while

satisfying the Constraint 3.1 may be quite difficult. However, the Weighted Ad-

ditive Schwarz method [76] offers potential for distributed implementation. The

OSE algorithm described in this dissertation is closely related to the multisplitting

and Weighted Additive Schwarz method of solving linear equations [76].

3.3 Jacobi algorithm

In the Jacobi algorithm, a node obtains multiple estimates of its own variable

by adding the appropriate relative measurements to its neighbors’ estimates. It

then computes the new estimate of its variable by taking a weighted average of

those estimates. To describe the algorithm, we first define the 1-hop measurement

neighborhood of u, denoted by Nu, as the set of nodes with which u shares a

measurement edge (irrespective of the direction):

Nu = {v ∈ V |(u, v) ∈ E or (v, u) ∈ E} = {v ∈ V | dG(u, v) = 1}, (3.4)

where dG is the graphical distance between the nodes u and v, which is the number

of edges that have to be traversed in going from one to the other. The graphical

distance is evaluated without regards to the edge directions. The Jacobi algorithm

for computing the optimal estimates of the node variables is an iterative algorithm

that operates as follows for each node u ∈ V \Vr.

1. node u picks an arbitrary initial estimate x̂
(0)
v for the node variables xv, v ∈
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{u} ∪N c
u, i.e., for itself and those of its neighbors from which it can receive

messages. The neighbor set N c
u in the communication graph was defined

in Constraint 3.1. These estimates need not be consistent across different

nodes. The reference nodes start at their known values.

2. at the ith iteration, node u assumes that the current estimate x̂
(i)
v for the

node variable xv of each communication neighbor v ∈ N c
u is correct and

updates its own estimate by solving the following equation:

( ∑

e∈~Eu(1)

P−1
e

)

x̂(i+1)
u =

∑

e∈~Eu(1)

P−1
e

(

x̂
(i)
e\u + au,eζe

)

, (3.5)

where e \ u, for an edge e incident on u, denotes the “other end” of e1, and

aue is the (u, e)th entry of the incidence matrix A(defined in Section 2.2.1),

and ~Eu(1) is the set of edges in the measurement graph G that are incident

on the node u such that there are communication edges from their other

ends toward u :

~Eu(1) := {e ∈ E | e ∼ u, (e \ u, u) ∈ E c}. (3.6)

The arrow in the notation is used to emphasize that the measurement edges

in ~Eu(1) depend on the direction of the edges in the communication graph.

After the computation, node u broadcasts the new estimate x̂
(i+1)
u to all its

neighbors that can receive messages from it.

3. At the end of the ith iteration, node u listens for the broadcasts from its

1-hop in-neighbors, which are used to update the node variable estimate

x̂
(i+1)
v for each v ∈ N c

u. Once all updates are received, a new iteration can

start.

1That is, if e = (v, u), then e \ u = v and e \ v = u.
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These iterations can be terminated at a node when the change in its recent

estimate is seen to be lower than a pre-specified threshold value or a pre-specified

maximum number of iterations are completed. Figure 3.3 shows the relevant

equations for one iteration of the Jacobi algorithms applied to the measurement

graph shown in Figure 2.6.

To gain insight into the Jacobi algorithm, imagine for the moment that when

node u receives from its communication neighbors their current estimates x̂
(i)
v ,

v ∈ N c
u, it believes those are the optimal estimates of the corresponding node

variables. In that case, node u can compute its optimal estimate by using the

measurements between itself and its communication neighbors. This estimation

problem is no different from the original BLUE estimation problem, except that

it is defined over the much smaller graph ~Gu(1) = (V c
u (1), ~Eu(1)), whose nodes

include u and its communication neighbors:

V c
u (1) = {u} ∪ N c

u(1).

We call ~Gu(1) the 1-hop communication-enabled subgraph of G centered at u. Since

u thinks that the node variables of its neighbors are exactly known, all of these

nodes should be understood as references; so that ~Gu(1) has only one unknown

node variable, namely, xu. Node u can now compute an estimate of its node vari-

able by solving the BLU estimation problem associated with the 1-hop subgraph

~Gu(1), which turn out to be (3.5). The Jacobi algorithm can therefore be thought

of as an algorithm in which every node solves a local optimal estimation problem

by assuming their neighbors’ estimates are correct and performing this compu-

tation repeatedly as those estimates are updated. The name “Jacobi algorithm”

comes from the fact that when communication is symmetric, the update equa-

tion (3.5) is essentially the Jacobi method for solving the linear equation (2.6)

that defines the optimal estimate [75].
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A measurement graph and an associated symmetric communication graph:
2 1e1e3

e4e5

3

4
2 1

3

4

G Gc

The 1-hop subgraphs of node 4, with and without considering the communica-

tion graph, are shown below. Since communication is symmetric, these are the

same.

3

4
2

PSfrag replacements
e3

e5
3

4
2

PSfrag replacements
e3

e5

G4(1) Gc
4(1)

In the subgraph G4(1), the measurement model (2.4) for the only unknown

variable x4, when x2 and x3 are taken as references, is

[ z3
z5 ]
︸︷︷︸

z

=
[

I 0
0 −I

]

︸ ︷︷ ︸

AT
r

[ x2
x3 ]
︸︷︷︸

xr

+
[−I

I

]

︸ ︷︷ ︸

AT
b

x4
︸︷︷︸

x

+ [ ε2
ε5 ]
︸︷︷︸

ε

.

The corresponding optimal estimate (2.6) when all measurement covariance

matrices are equal to the identity matrix is given by

(
AbAT

b
︸ ︷︷ ︸

L

)−1Ab(z−AT
r xr)

︸ ︷︷ ︸

b

=
1

2

(
x2 − z3 + x3 + z5

)
.

Figure 3.3. The Jacobi Iteration with symmetric communication. The iterations

of the Jacobi algorithm are explained according to the interpretation that every

node is repeatedly solving a local optimal estimation problem that is defined over

the 1-hop subgraph centered at itself.
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(continued from Figure 3.3) Since node 4 can receive messages from all of

its measurement neighbors, the Jacobi iteration for node 4 is

x̂
(i+1)
4 =

1

2

(
x̂

(i)
2 − z3 + x̂

(i)
3 + z5

)

A similar construction based on the 1-hop subgraphs centered at nodes 2

and 3 leads to update equations for estimates of x2 and x3 given by

x̂
(i+1)
2 =

1

4
(x̂

(i)
4 + x̂

(i)
3 + ζ3 + ζ4 − ζ1 − ζ2),

x̂
(i+1)
3 =

1

2
(x̂

(i)
2 + x̂

(i)
4 − ζ4 − ζ5).

The reference node, which is node 1, is assumed to be at the origin, and

thus x1 does not appear in the equations.

Figure 3.4. Figure 3.3 contd.
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3.3.0.1 Asynchronous implementation

The algorithm described by (3.15) is synchronous, since that description im-

plicitly assumes that the iteration counter i is common to all the nodes. This

means that all nodes update their estimates at the same time after getting updates

from all of their communication neighbors. Moreover, the description above im-

plicitly assumes that there are no communication faults, i.e., a node is always able

to receive data from all of its communication neighbors. In practice, nodes may

have varying processor power, so that one may be ready to start the next iteration

while other nodes have not finished their computation. In addition, in wireless

networks with time dependent communication failures or nodes with scheduled

sleep-wake cycles, the communication graph may be time varying. In both these

cases, waiting to get information from all neighbors may not be advisable. In

this case, the algorithm can be implemented in an asynchronous fashion, in which

nodes wait for a “time-out” period to receive estimates from their neighbors. If

estimates from some neighbors do not arrive in this time, they use the previously

received data from those nodes. Asynchronous implementation therefore requires

a local buffer to store data that is successfully received from neighboring nodes

for use later when communication fails.

Consider time index t ∈ N that is incremented by 1 at the end of every time-

out period. A communication edge (u, v) is said to fail in time t if during the time

between t−1 and t, broadcasts from node u fail to reach v. A node u is said to fail

at time t if during the time between t− 1 and t, node u either does not broadcast

its current estimate or does not process any information. Such node failures can

occur due to sleep-scheduling [54], among other reasons. We do not consider other

forms of node failure that is possible, such that a failed node sends incorrect or
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A measurement graph and an associated asymmetric communication graph:
2 1e1e3

e4e5

3

4
2 1

3

4

G Gc
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e3e5

G4(1) ~G4(1)
If the measurement graph were symmetric, The Jacobi iteration for node 4

would have been the same as that shown in Figure 3.3. However, since node

4 now cannot receive messages from node 3, the Jacobi iterations for node 4

becomes

x̂
(i+1)
4 = (x̂

(i)
2 − z3

)

The iterations for nodes 2 and 3 are the same as the ones shown in Figure 3.4,

since both of them can receive messages from all of their measurement neigh-

bors.

Figure 3.5. The Jacobi Iteration with asymmetric communication.
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random data. We say that a communication edge (u, v) is active at time t if in that

time, neither of the nodes u and v fails and the communication edge (u, v) does

not fail. At every time t, the communication graph Gc(t) = (V ,E c(t)) consists of

all the nodes of G and all the communication edges that are active in that time.

Although buffers can partially mitigate the effects of time variation in the com-

munication, certain difficulties still remain. Since every node u has to keep and

update estimates of the variables of its 1-hop communication-neighbors (see (3.5)),

node u has to know its communication-neighbors in advance. Consider the fol-

lowing situation: nodes u and v are neighbors in the measurement graph, but u

does not receive any communication from v for the first, say, 10, iterations, and

then receives a message from v at the 11th iteration, and never receives any com-

munication from v thereafter. Should node u initialize another local variable for

xv’s current estimate at the 11th iteration? If so, what should it do when it sees

that all communication from v has ceased thereafter? What if another neighbor

appears at the 100th iteration?

To avoid such difficulties, we assume that every node u ∈ V \ Vr detects

its communication-neighbors during an initial detection phase, before the itera-

tions begin. This detection, which may be carried out even during the process

of obtaining the relative measurements, leads to an initial communication graph

Gc
init = (V ,E c

init) consisting of those communication edges that were active over

the time interval of the detection phase. A node does not update its communica-

tion neighborhood N c
u thereafter.
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3.3.1 Correctness and performance analysis of the Jacobi

algorithm

To analyze the algorithm, we now define a few matrices. The combined inci-

dence matrix Ac ∈ R
n×m, where m is the number of edges in the measurement

graph G, for the pair of directed graphs (G,Gc) is defined in the following manner:

[Ac]u,e =







au,e if e ∈ E , e ∼ u, (e \ u, u) ∈ E c

0 otherwise

, (3.7)

where au,e is the (u, e)th entry of the incidence matrix A for the measurement

graph G. Recall that for an edge e that is incident on a node u, e \ u denotes the

other end of u (see Section 3.3). The incidence matrix was defined in Chapter 2

and is standard in algebraic graph theory. The combined incidence matrix Ac is

not standard in graph theory, though. Note that Ac(G,Gc) = A(G) if and only if

the communication graph Gc is symmetric.

The weighted in-degree matrix D ∈ R
kn×kn of the directed graph pair (G,Gc)

is defined as a block-diagonal matrix with

[D]u,u =
∑

e∈Ec
u(1)

P−1
e (3.8)

Similarly, the weighted adjacency matrix C ∈ Rkn×kn of the directed graph pair

(G,Gc) is defined as

[C]u,v =







P−1
e if ∃e ∈ E such that e ∼ u, e ∼ v and (v, u) ∈ E c,

0 otherwise

(3.9)

Let M,N ∈ Rknb×knb be the sub-matrices of D and C, respectively, obtained

by removing the rows and columns corresponding to the reference nodes, where
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nb = |V \Vr| is the number of nodes that do not know their variables:

[M]u,v =







[D]u,u if u = v, u ∈ V \Vr

0 u 6= v

, (3.10)

[N]u,v = [C]u,v for u, v ∈ V \Vr. (3.11)

Figure 3.6 shows an example of these matrices. Now define

Lc := D− C, (3.12)

Lc := M−N. (3.13)

It is straightforward to verify that

Lc = Ac
bP−1AT

b . (3.14)

where Ac
b := Ac

b ⊗ Ik and Ac
b is the basis combined incidence matrix of (G,Gc)

obtained from Ac by removing from it the rows that correspond to the reference

nodes. It can be verified that Lc does not depend on the edge directions of G but

does depend on that in Gc. Figure 3.6 shows an example of all of the matrices

described above.

We conclude the definitions with the following observation:

Proposition 3.3.1. The matrix M defined in (3.10) for a graph pair (G,Gc) is

positive definite. �

Proof of Proposition 3.3.1. Assumption 3.1.1 ensures that for every node u ∈ V \
Vr, there is at least measurement edge e ∈ E , e ∼ u such that there is an incoming

communication edge in Gc from the other end of u, i.e., ∃(e \ u, u) ∈ E c. As a

result, the set E c
u(1) is non-empty for every u ∈ V \ Vr. The result now follows

from the definition of D and M in (3.8) and (3.10).
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We start with the synchronous, time-invariant case, in which every node up-

dates its estimate at the same time instant, the communication graph is fixed for

all time (i.e., there are no node or edge failures). In this case, the Jacobi algo-

rithm (3.5) can be compactly expressed as the following discrete-time dynamical

system:

Mx̂i+1 = Nx̂i + bc,

⇒ x̂(i+1) = M
−1

Nx̂(i) + M
−1bc, (3.15)

where

bc := Ac
bP−1(z−AT

r xr). (3.16)

The fixed point of the iteration (3.15) is given by the solution of the following

system of linear equations, when it exists:

Lcx̂
∞ = bc, (3.17)

For x̂∞ to exist, Lc must be invertible. In the next section we describe the

conditions under which it is so, and when the Jacobi algorithm converges to this

solution. It is important to note here that Lc = L if and only if all the inter-node

communication is symmetric. If there is asymmetry in the communication graph,

the fixed point of the Jacobi iteration will not coincide with the BLU estimates.

This will be stated more precisely in the next section.

We end this section with the observation that when the limiting estimate x̂∞

exists, it is an unbiased estimate of the node variable vector x.

Lemma 3.3.1. The unique solution to Lcx̂
∞ = bc, when it exists, is an unbiased

estimate of x and the covariance of the estimation error ẽ∞ := x − x̂∞ is given

by

Σ := E[ẽ∞ẽ∞T ] = L−1
c Ac

bP−1AcT
b L−T

c . �
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For the case when node variables are scalars, i.e., k = 1, and the measurement

error variances are 1 for every measurement edge, the combined incidence and

Laplacian matrices are:

Ac =












e1 e2 e3 e4

1 0 0 0 0

2 −1 1 1 0

3 0 −1 0 −1

4 0 0 −1 0












Lc =












1 2 3 4

1 0 0 0 0

2 −1 3 −1 −1

3 0 −1 2 −1

4 0 −1 0 1












Figure 3.6. The matrices used to compactly represent the Jacobi algorithm with

asymmetric communication, for the pair (G,Gc) shown. For simplicity, we consid-

ered the case k = 1 and every measurement error variance is 1. We use M,N,D,C

and Lc to represent M,N,D,C and Lc, respectively, to emphasize that k = 1.

75



(continued from Figure 3.6) The in-degree and adjacency matrices of (G,G c):

C =












1 2 3 4

1 0 0 0 0

2 1 0 1 1

3 0 1 0 1

4 0 1 0 0












D =












1 2 3 4

1 0 0 0 0

2 0 3 0 0

3 0 0 2 0

4 0 0 0 1












and their submatrices obtained by removing the rows and columns correspond-

ing to the reference nodes:

N =









2 3 4

2 0 1 1

3 1 0 1

4 1 0 0









M =









2 3 4

2 3 0 0

3 0 2 0

4 0 0 1









Figure 3.7. Figure 3.6 contd.
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Proof of Lemma 3.3.1. From (3.17), (3.16), (3.14) and (2.4), we get

x̂∞ = L−1
c Ac

bP−1(z−AT
r xr)

= L−1
c Ac

bP−1(AT
b x + ε)

= x + L−1
c Ac

bP−1
ε,

where the last equality follows from (3.14). It follows that E[x̂∞] = x, so the

estimate is unbiased, and also that ẽ∞ = L−1
c Ac

bP−1
ε. Therefore, the covariance

of the estimation error ẽ∞ is

E[ẽ∞ẽ∞T ] = E[L−1
c Ac

bP−1
εε

T P−1AcT
b L−T

c ]

= L−1
c Ac

bP−1AcT
b L−T

c ,

which proves the result.

3.3.1.1 Correctness of the Jacobi algorithm

First we analyze the simplest case of symmetric, time-invariant communica-

tion.

Theorem 3.3.1. Consider the Jacobi algorithm implemented on a measurement

and time-invariant communication graph pair (G,Gc) that satisfies Assumption 3.1.1.

If the communication graph Gc is symmetric, then the synchronous Jacobi algo-

rithm is correct. �

To prove Theorem 3.3.1, we will also need the following technical result from [77].

Proposition 3.3.2 (Lemma 4.2 of [77]). Let X := D −N be a square matrix

such that D + D∗ > 0 and Xθ = D + D∗ − (eiθN + e−iθN∗) > 0 for all θ ∈ R.

Then ρ(D−1N) < 1, where ρ(·) denotes the spectral radius. �
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Proof of Theorem 3.3.1. Since the communication graph is symmetric, Lc = L
and bc = b. Therefore L = M − N, so that we can rewrite (2.6), the equation

defining the BLU estimate, as

Mx̂∗ = Nx̂∗ + b

⇒ x̂∗ = M
−1

Nx̂∗ + M
−1b,

Comparing the above with (3.15), we see that the algorithm’s error (defined

in (3.2)) evolves according to

e∗(i+1) = J e∗(i), (3.18)

where

J := M
−1

N (3.19)

is the Jacobi iteration matrix. Therefore, to prove the theorem, we need to show

that ρ(M−1N) < 1. Since L = M− N > 0 and M > 0, it follows that M > N ≥

cos θ N for every θ ∈ R. From Proposition 3.3.2 it follows that ρ(M−1N) < 1,

which proves the theorem.

To analyze the correctness and performance of the algorithm when commu-

nication graph is asymmetric and possibly time-varying, we make an additional

assumption:

Assumption 3.3.1 (Diagonal). Either of the following two conditions hold:

1. the measurement error covariance matrices are either all equal to one an-

other, i.e., ∃Po ∈ Sk+ such that Pe = Po, ∀e ∈ E , or,

2. every measurement error covariance matrix is diagonal (but not necessarily

equal to one another). �

78



The case of vector-valued variables can be reduced to the scalar valued case

as long Diagonal Assumption 3.3.1 is satisfied, as we now show.

If the covariance matrices are all equal, then the covariances play no role and

can be taken as the identity matrix. To see why, let Pe = Po ∈ Rk×k ∀e ∈ E ,

then P = Im ⊗ Po, where ⊗ denotes the Kronecker product and m is the number

of edges in G. Equation (2.6) now simplifies to

L⊗ P−1
o x̂∗ = (Ab ⊗ P−1

o )z̄,

where L := AbA
T
b is the unweighted Dirichlet (grounded) Laplacian matrix of the

graph G. Simple algebraic manipulation using rules of Kronecker algebra show

that the solution to this equation is x̂∗ = ((L−1
c Ab)⊗Ik)z̄. Therefore we need only

to solve (Lb⊗ Ik)x̂∗ = (Ab⊗ Ik)z̄ to get the optimal estimate. We can decompose

the above following k systems of decoupled equations:

Lbx̂
∗
j = bj, j = 1, . . . , k, (3.20)

where xj := [x1,j , . . . , xnb,j]
T ∈ Rnb is the vector of the jth component of the node

variables, bj = Abz̄j with z̄j := [ζ̄1,j, . . . , ζ̄m,j]
T ∈ R

m being the vector of the jth

components of the entries in z̄. When the covariance matrices are diagonal, it

is again straightforward to show that the estimation problem for each of the k

components of every node variable is decoupled. In light of the discussion above,

when the Diagonal Assumption 3.3.1 holds, we only need to consider the case when

the variables and measurements are scalar-valued.

In the sequel, to emphasize that we are proving results only for the scalar

valued variables, we denote the matrices Lc,M, and N in the special case k = 1

by Lc,M , and N . One of the main advantages of considering the scalar case of

k = 1 is that Lc turns out to be an M-matrix [78, Chapter 6]. M-matrices are a
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special class of matrices that have been widely studied in the context of iterative

methods of solving linear equations since they arise naturally in numerical solution

of PDEs, in convergence analysis of matrix-iteration processes, and they possess

a number of useful properties that help establish convergence of asynchronous

parallel iterative methods [78, 79]. Non-singular M-matrices are termed matrices

of class K by Fiedler and Ptak [80].

To define M-matrices, we start with matrices of class Z, which are square

matrices with non-positive off-diagonal entries. A matrix X of class Z is an M-

matrix if it can be written as X = sI − B where B � 0 and s ≥ ρ(B). Here and

in the sequel, � (�) is used to denote entry-wise ordering. That is, for a matrix

or a vector X, X � (�)0 means every entry of X is positive (non-negative).

For more information on M-matrices, the reader is referred to Chapter 6 of [78],

where 50 equivalent characterizations of M-matrices are provided. We start with

the following technical result:

Lemma 3.3.2. Consider the matrices Lc,M,N ∈ Rnb×nb (i.e., the matrices

Lc,M,N for the case k = 1) defined in (3.12), (3.10), and (3.11) for a mea-

surement and time-invariant communication graph pair (G,Gc) that satisfies As-

sumption 3.1.1. The matrix Lc defined for (G,Gc) is an M-matrix. Moreover, the

following statements are equivalent:

1. The matrix Lc is a non-singular M-matrix.

2. ρ(J) < 1, where J := M−1N is the Jacobi iteration matrix (for k = 1) and

ρ(·) denotes the spectral radius.

3. For every node u ∈ V \ Vr, there is a directed path in the communication

graph Gc from at least one of the reference nodes to u. �
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A directed path P from a node p1 to another node pm in a graph G is an

alternating sequence of finite number of nodes and edges that start with p1 and

end with pm:

P = {p1, e1, p2, e2, . . . , pl, el, pl+1, . . . , em−1, pm}

such that every edge el in the path is directed from the previous node to the

next node in the path: el = (pl, pl+1). Note that edge directions matter in this

definition.

The proofs of lemma 3.3.2 and the theorem below, which describes the behavior

of the Jacobi algorithm with (possibly) asymmetric communication, are provided

in Section 3.7.

Theorem 3.3.2. Consider the synchronous Jacobi algorithm implemented on a

measurement graph G and its associated time-invariant communication graph Gc

such that G and Gc satisfy Assumptions 3.1.1. Furthermore, assume that Diago-

nal Assumption 3.3.1 is satisfied. The Jacobi algorithm converges to the unique

solution of Lcx̂
∞ = bc, if and only if, for every u ∈ V \ Vr, there is a directed

path in Gc from at least one of the reference nodes to u. �

Proof of Theorem 3.3.2. We only consider the case k = 1 in the proof. The case

for k > 1 will follow from Diagonal Assumption 3.3.1, as explained earlier.

Define the error at the ith iteration as the difference between the current estimate

and the limiting estimate:

e(i) := x̂(i) − x̂∞.

We rewrite (3.17) as

M x̂∞ = N x̂∞ + bc
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It follows from (3.15) that the error evolves according to :

e(i+1) = M−1Ne(i) (3.21)

Clearly, the Jacobi algorithm converges (i.e., the error e(i) → 0 as i→∞) if and

only if ρ(M−1N) < 1. It follows from Lemma 3.3.2 that this condition is satisfied

if and only if, for every u ∈ V \ Vr, there is a directed path in Gc from at least

one reference nodes to u, which proves the theorem.

The next theorem states how the algorithm behaves in the asynchronous mode,

i.e., when there are temporary node and communication edge failures, and nodes

update their estimates in an asynchronous manner as described in Section 3.3.0.1.

Apart from deterministic failures, we consider the following model of random

node and communication edge failures. At every time instant t ∈ N, every com-

munication edge can fail independently of all other links with probability p, and

every node can fail independently of all other nodes, with probability q, where

p < 1, q < 1. This model of failure is referred to as i.i.d. failure. The proof the

result is provided in Section 3.7.

Theorem 3.3.3. Consider the asynchronous Jacobi algorithm implemented on the

measurement graph G and its associated time-varying communication graph Gc(t),

such that G and Gc(t) satisfy Assumption 3.1.1 at every t ∈ N. Let Gc
init denote the

initial measurement graph that describes the neighbor relations used by the nodes

to implement the algorithm, and let Lc and bc be as defined in (3.12) and (3.16)

for the pair (G,Gc
init). Furthermore, assume that Diagonal Assumption 3.3.1 holds.

Then, the Jacobi algorithm converges to the unique solution of Lcx = bc if and

only if

1. for every node u ∈ V \Vr, there is a directed path in Gc
init from at least one

reference node to that node, and
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2. no communication edge in Gc
init fails permanently, and no communication

edge that is not in Gc
init remains active infinitely often, i.e.,

∞⋂

`=1

∞⋃

t=`

Gc(t) = Gc
init. (3.22)

When nodes and communication edges fail according to the i.i.d. failure model, if

condition 1 above is satisfied, then the Jacobi algorithm converges to the unique

solution of Lcx = bc almost surely. �

Cautionary remark: All of the convergence results of the Jacobi algorithm in

this dissertation, either with asynchronous iteration or with asymmetric communi-

cation, have been established for the special cases when Diagonal Assumption 3.3.1

is satisfied. A general convergence result is still an open problem. However, in

the simulations described in Section 3.3.3, this assumption is violated but the

algorithm is seen to converge. Such numerical evidence suggests that Diagonal

Assumption 3.3.1 is perhaps required due to our proof technique, but can probably

be relaxed. �

The following corollary about the correctness of the Jacobi algorithm follows

immediately.

Corollary 3.3.1. When Assumption 3.1.1 and the Diagonal Assumption 3.3.1

hold, the Jacobi algorithm implemented on a measurement graph G and its associ-

ated time-varying communication graph Gc(t) is correct if and only if the following

conditions hold:

1. The initial communication graph Gc
init is symmetric.

2. No communication edge fails permanently and no communication edge that

is not in Gc
init remains active infinitely often.
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When the nodes and communication edges fail according to the i.i.d. failure model,

and the first condition above is satisfied, then the Jacobi algorithm converges to

the optimal estimates a.s. �

Note that the condition of there being directed paths from reference nodes to

the other nodes in Theorem 3.3.3 is automatically satisfied by Gc
init being symmet-

ric (see Assumption 3.1.1 to see why).

3.3.1.2 Convergence rate of the Jacobi algorithm

For establishing the convergence rate of Jacobi algorithm, we restrict our at-

tention to the special case of symmetric communication without any communi-

cation faults, with the node variables being scalars (i.e., k = 1). As explained

in Section 3.3.1.1, when Diagonal Assumption 3.3.1 is satisfied, the general case

of vector-valued variables can be analyzed in terms of the scalar case. It follows

from (3.18) that convergence rate of the Jacobi algorithm will depend on the

spectrum of the Jacobi iteration matrix J .

We will need the following notation in presenting the convergence rate result.

Let λmin(L) denote the minimum eigenvalue of the matrix L, and dmax(P ),dmin(P )

denote the maximum and minimum weighted degrees of the graph G, i.e., dmax(P ) :=

maxj Mj,j and dmin(P ) := minj Mj,j. The dependence of dmax, dmin on P is used

to emphasize that the edge weights are the inverse-variances which are specified

by a function P : E → (0,∞). The proof is provided in Section 3.7.

Theorem 3.3.4. Consider a pair of measurement and time-invariant commu-

nication graphs (G,Gc) that satisfies Assumption 3.1.1. Assume that k = 1, Gc

is symmetric, and the Jacobi algorithm is implemented in a synchronous man-

ner. For every 0 < ε < 1, the number of iterations niter(ε) required so that
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ε(i) < ε, ∀i > niter(ε), satisfies

⌊
dmin(P )

| log ε|
2λmin(L)

⌉
≤ niter(ε) ≤

⌈
dmax(P )

| log ε|
λmin(L)

⌉
. �

The advantage of the result above is that for a large class of graphs that are

relevant to ad-hoc sensor networks, asymptotic bounds on λmin(L) can be obtained

even without complete knowledge of the graph. We will obtain in Chapter 6 one

such bound in terms of “effective resistances” in the graph. In addition, the

ratios λmin(L)/dmax, λmin(L)/dmin are closely related to the well-known algebraic

connectivity of the unweighted graph G, for which an extensive literature exists [81,

82].

3.3.2 Reducing error faster - flagged initialization

The preceding discussion shows that in measurement graphs with low algebraic

connectivity, the Jacobi algorithm will take a large number of iterations before the

error ratio ε(i) becomes sufficiently small. Since large ad-hoc and sensor networks

are expected to have low algebraic connectivity, one can expect that the number

of iterations that the Jacobi algorithm takes before the error w.r.t. to the optimal

estimate, ‖e∗(i)‖, is lower than a pre-specified value will be, in general, quite large.

There are two ways to reduce the error ‖e∗(i)‖ : employ an algorithm with

a faster convergence rate compared to Jacobi, and initialize the iterations with

more accurate initial estimates. Devising a faster algorithm is postponed till

Section 3.4. In this section we show how to reduce the error w.r.t. to the optimal

estimate of the Jacobi algorithm by cleverly initializing the initial estimates. This

scheme, called flagged initialization, does not require extra communication or

expensive computation, and is also applicable to other algorithms. Indeed, the
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flagged initialization will be used with the OSE algorithm to reduce its error.

After the deployment of the network, the reference nodes initialize their esti-

mates to their known values, but all other nodes initialize their estimates to ∞,

which serves as a flag to declare that these nodes do not have a good estimate

of their variables. Subsequently, in its estimate updates, each node includes in

its 1-hop subgraph only those nodes that have finite estimates. If none of their

neighbors has a finite estimate, then the node keeps its estimate at∞. In the be-

ginning, only the references have a finite estimate. In the first iteration, the 1-hop

neighbors of the references can compute finite estimates, whereas in the second

iteration, the 2-hop neighbors of the references can also obtain finite estimates

and so forth until all nodes have finite estimates. Flagged initialization affects

only the initial stage of the algorithm, and thus does not affect its correctness and

the rate at which the error ratio ε(i) is reduced with iteration number i.

3.3.3 Simulations of the Jacobi algorithm

We present a few numerical simulations to study the behavior of the Jacobi

algorithm. First we simulate the algorithm with symmetric communication and

synchronous operation.

In these simulations the node variables represent the physical position of sen-

sors in the plane. All simulations refer to a network with 200 nodes that are ran-

domly placed in the unit square (see Figure 3.8). Node 1, placed at the origin, is

chosen as the single reference node. Pairs of nodes separated by a distance smaller

than rmax := 0.11 are allowed to have noisy measurements of each others’ relative

range and bearing (see Figure 2.1). The range measurements are corrupted with

zero-mean additive Gaussian noise with standard deviation σr = 0.15 rmax, and
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the angle measurements are corrupted with zero-mean additive Gaussian noise

with standard deviation σθ = 10 deg. Assuming that the range and bearing

measurement errors are independent and have variances independent of distance,

consider a noisy measurement (r, θ) of true range and angle (ro, θo). Then it can

be shown that the covariance matrix of the measurement ζu,v = [r cos θ, r sin θ]T

is given approximately by

Pu,v =






y2
oσ

2
θ + σ2

r cos2 θo −xoyoσ
2
θ + σ2

r

2
sin(2θo)

−xoyoσ
2
θ + σ2

r

2
sin(2θo) x2

oσ
2
θ + σ2

r sin2 θo




 , (3.23)

where xo = ro cos θo and yo = ro sin θo. Assuming that the scalars σr, σθ are

provided a priori to the nodes, a node can estimate this covariance by using the

measured r and θ in place of their unknown true values. Since the covariances

are not diagonal and since distinct measurements have distinct covariances, this

example does not satisfy the assumptions for which the OSE algorithm is guar-

anteed to converge. The locations estimated by the centralized optimal estimator

are shown in Figure 3.8, together with the true locations.

In reporting simulation results, we plot the normalized error vs. iteration

number, where the normalized error is defined as

‖x̂(i) − x̂∗‖
‖x̂∗‖ . (3.24)

Recall that x̂(i) is the vector of estimates at the ith iteration and x̂∗ is the optimal

estimate.

Figure 3.9(a) compares the normalized error as a function of iteration number

for the Jacobi algorithm, with and without flagged initialization. The straight lines

in the log-scaled graph indicate the exponential convergence of the algorithm. The

figure shows the dramatic improvement achieved with the flagged initialization

scheme. With flagged initialization, the Jacobi algorithm can estimate the node
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0

0.5

Figure 3.8. A measurement graph created by an ad-hoc sensor network with 200

nodes distributed randomly in a unit square area. The edges of the measure-

ment graph are shown as line segments connecting the node positions, which are

shown as black dots. Two nodes with an edge between them are provided with a

measurement of their relative positions in the plane. The red squares are the po-

sitions estimated by the (centralized) optimal estimator. A single reference node

is located at the origin.

positions within 5% of the optimal estimate after only 9 iterations.

Figure 3.9(b) shows the performance of the Jacobi algorithm with flagged

initialization under i.i.d. communication link failure. Every symmetric communi-

cation link is allowed to fail (independently of all other links) with probability pf

at every iteration, and no node is allowed to fail. Therefore, in the terminology of

Theorem 3.3.3, p = pf , q = 0. Note that although the communication graph Ginit

is symmetric, the communication failures need not be. A communication edge

(u, v) can fail independently of the communication edge (v, u). Three values of

the failure probabilities are tested. Not surprisingly, higher failure rates result in
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slower convergence. Note that Theorem 3.3.3 guarantees the convergence of the

error to 0 is guaranteed with link and node failure only when Diagonal Assump-

tion 3.3.1 is satisfied. In these simulations the assumption was not satisfied (see

the covariances in (3.23)), still the algorithm is seen to converge to the optimal

estimates.
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(a) Without and with flagged initialization.
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(b) Effect of communication link failure.

Figure 3.9. Simulation results (normalized error ‖x̂(i)−x̂
∗‖

‖x̂∗‖ vs. iteration number) of

Jacobi algorithm with symmetric communication. (a) With and without flagged

initialization. “0 init.” means all the node estimates were initialized to 0. The

communication graph is symmetric and time-invariant (no faults). (b) Effect

of communication-link failures. All the simulations in case (b) are carried out

with flagged initialization. Note that although the communication graph Ginit is

symmetric, the communication failures need not be. A communication edge (u, v)

can fail independently of the communication edge (v, u).

Now we present numerical evidence that the Jacobi algorithm indeed converges

to a non-optimal estimate when communication is asymmetric. The Jacobi algo-

rithm is simulated for the measurement and communication graph pair shown in
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Figure 3.1. Simulation results are shown in Figure 3.10. At every iteration of the

simulation, every communication edge was allowed to fail with a probability of

0.2, independent of all other edges, i.e., p = 0.2 and q = 0. The Figure validates

the predictions of Theorem 3.3.3 and Lemma 3.3.1: the estimate converges to the

predicted value x̂∞ but not to the optimal estimate x∗.
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Figure 3.10. Simulation results on the convergence of the Jacobi algorithm with

asymmetric communication. The simulation was conducted for the measurement

graph G1 and communication graph Gc
1 shown in Figure 3.1. Each communication

edge was allowed fail at each iteration, with a probability of 0.2, independent of all

other edges. The algorithm converges to an unbiased estimate x̂∞ whose variance

is larger than the that of the BLU estimate.

3.4 The overlapping subgraph estimator(OSE)

algorithm

In this section we describe a distributed algorithm to compute the optimal

estimates that has a faster convergence rate compared to the Jacobi algorithm.
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In spite of the advantages of the Jacobi algorithm discussed above, such as scala-

bility, convergence, correctness under mild assumptions, robustness to temporary

failures, it has a significant weakness, namely, its slow convergence rate(see the

discussion following Theorem 3.3.4).

It may be possible to improve the convergence rate by using other iterative

techniques such as Gauss – Siedel, SOR or the conjugate gradient [75] methods,

or even by preconditioning, but any such improvement will come at the cost of

increased communication. In ad-hoc wireless networks, the primary source of en-

ergy consumption is communication [10], while much less energy is consumed for

computation [11]. Therefore the challenge is to devise an algorithm that achieves

faster convergence compared to the Jacobi algorithm with no, or minimal, in-

crease in communication. The overlapping subgraph estimator (OSE) algorithm

described in this section achieves these objectives. It also retains the scalability

and robustness properties of the Jacobi algorithm.

We will consider only the symmetric communication case in describing the

OSE algorithm. All the analysis and simulation of the OSE algorithm will be done

under the assumption that inter-node communication is symmetric. A general

analysis of the algorithm with asymmetric case is a subject of future research.

The OSE algorithm can be thought of as an extension of the Jacobi algorithm,

in which individual nodes utilize larger subgraphs to improve their estimates. To

understand how, suppose that each node broadcasts to its 1-hop neighbors not

only its current estimate, but also all of the latest estimates that it received from

its 1-hop neighbors. Note that since we have assumed symmetric communica-

tion between nodes, the 1-hop communication neighbors and 1-hop measurement

neighbors are identical, which we refer to as the 1-hop neighbors. In the absence

of drops, at the ith iteration step each node u has the estimates x̂
(i)
v for its 1-hop
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neighbors v ∈ Nu(1)as well as the (older) estimates x̂
(i−1)
v for its 2-hop neighbors

v ∈ Vu(2) \ Nu(1).

The reason that we don’t attempt a complete analysis of the OSE algorithm

in the presence of asymmetric communication, apart from the mathematical diffi-

culty in carrying out such an analysis, is that – and it will be shown in Section 3.5

– it is impossible to ameliorate some of the detrimental effects of asymmetric

communication by using the OSE algorithm in place of Jacobi.

Under the information exchange scheme described above, at the ith iteration

each node u has estimates of all of the node variables of the nodes in the set

Vu(2) consisting of all of its 1-hop and 2-hop measurement neighbors. In the

OSE algorithm, each node updates its estimate using the 2-hop subgraph Gu(2) =

(Vu(2),Eu(2)) of G centered at u, with edge set Eu(2) consisting of all of the edges

of the measurement graph G that connect elements of Vu(2). For this estimation

problem, node u takes as references the node variables of its 2-hop neighbors. The

gain in convergence speed with respect to the Jacobi algorithm comes from the

fact that the 2-hop subgraph Gu(2) contains more edges than the 1-hop subgraph

Gu(1). The OSE algorithm can be summarized as follows:

1. Each node u ∈ V picks an arbitrary initial estimate x̂
(−1)
v of the node

variable xv of each of its 2-hop neighbors v ∈ Vu(2)\Vu(1). These estimates

need not be consistent across different nodes.

2. At the ith iteration, each node u ∈ V assumes that the estimates x̂
(i−2)
v

of the node variables xv of its 2-hop neighbors that it received through its

1-hop neighbors are correct and solves the corresponding optimal estimation

problem associated with the 2-hop subgraph Gu(2). In particular, each node
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u solves the linear equations Lu,2yu = bu, where yu is a vector of node vari-

ables that correspond to the nodes in its 1-hop subgraph Gu(1), and Lu,2,bu

are defined for the subgraph Gu(2) as L ,b are for G in (2.6). After this com-

putation, node u updates its estimate as x̂
(i+1)
u ← λyu + (1− λ)x̂

(i)
u , where

0 < λ ≤ 1 is a pre-specified design parameter and yu is the variable in yu

that corresponds to xu. The new estimate x̂
(i+1)
u as well as the estimates x̂

(i)
v

previously received from its 1-hop neighbors v ∈ Vu(1) are then broadcast

to all of its 1-hop neighbors.

3. At the end of the ith iteration, each node u then listens for the broadcasts

from its 1-hop neighbors and uses them to update its estimates for the node

variables of all of its 2-hop neighbors. Once all updates are received a new

iteration can start.

As in the case of the Jacobi algorithm, the termination criteria vary depending on

the application, and nodes use measurements and covariances obtained initially for

all future time. Figure 3.11 shows a 2-hop subgraph used by the OSE algorithm.
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Figure 3.11. (a) A measurement graph G with node 1 as reference, and (b) a 2-hop

subgraph G4(2) centered at node 4. While running the OSE algorithm, node 4

treats nodes 1, 5, and 2 as reference nodes in the subgraph G4(2) and solves for

the unknowns x3, x4, and x6.
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The previous description assumes that communication is synchronous and that

each node receives broadcasts from all of its neighbors. However, as in the Jacobi

algorithm, the OSE algorithm can be implemented in an asynchronous manner

to make the algorithm robust to imperfect synchronization and link failures. A

timeout mechanism can be used for this purpose, in which each node resets a timer

as it broadcasts its most recent estimates. When this timer reaches a pre-specified

timeout value, the node initiates a new iteration, regardless of whether or not it

received messages from all of its 1-hop neighbors. If a message is not received

from one of its neighbors, the node uses the data most recently received from that

neighbor for the next iteration.

Remark 3.4.1. h-hop OSE One can also design a h-hop OSE algorithm by letting

every node utilize a h-hop subgraph centered at itself, where h is an (small) integer.

The resulting algorithm is a straightforward extension of the 2-hop OSE just

described, except that at every iteration, individual nodes have to transmit to their

neighbors larger amounts of data than in 2-hop OSE, potentially requiring multiple

packet transmissions at each iteration. In practice, this added communication cost

limits the allowable value of h. �

The next result establishes the correctness of the OSE algorithm.

Theorem 3.4.1. Imagine a pair of measurement and initial communication graphs

(G,Gc
init) satisfying assumption 3.1.1. When the communication graph Gc(t) is

symmetric at every t ∈ N, and Diagonal Assumption 3.3.1 is satisfied, and no

node or communication edge fails permanently, i.e.,
⋂∞

`=1

⋃∞
t=` Gc(t) = Gc

init, then

the OSE algorithm converges to the optimal estimate. �

Proof of Theorem 3.4.1. In the special case λ = 1, the OSE algorithm becomes

the same as the Asynchronous Weighted Additive Schwarz (AWAS) method [83].
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In that case, Theorem 3.1 in [83] states that if L−1 � 0 and some weak regularity

condition holds, then the AWAS method converges for every initial condition.

Under the assumptions, it follows from Lemma 3.3.2 that L is a non-singular M-

matrix, and therefore L−1 � 0 [78]. The splitting L = M − N is called weak

regular if M−1 � 0 and M−1N � 0, which is satisfied in our case. The regularity

condition required in [83] is actually not on the splitting M −N but on a number

of splittings that every node can be thought of as applying in its local processor.

We refrain from repeating the tedious details, but it is straightforward to check

that the OSE algorithm satisfies the weak regularity conditions in Theorem 3.1

of [83]. This guarantees convergence of the AWAS method, and therefore of the

OSE algorithm. When λ < 1, the proof technique of Theorem 3.1 in [83] can

be adapted to prove again that the OSE algorithm converges. Since the proof is

extremely long and tedious, yet only a minor generalization of the results in [83],

it is not provided here. The complete proof is, however, available in [66].

Note that the inverse-positivity of M-matrices, and specifically of L was used

above, but not in proving convergence of the Jacobi algorithm. As in case of

the Jacobi algorithm, the Assumption 3.3.1 can probably be relaxed for the OSE

algorithm’s correctness. In the simulations described below, this assumption is

violated but the algorithm is seen to converge.

3.4.0.1 Modified EPA

The Embedded Polygon Algorithm (EPA) proposed in [69] can be used for

iteratively solving (2.6); since it is essentially a block – Jacobi method of solv-

ing a system of linear equations, where the blocks correspond to non-overlapping

polygons. The special case when the polygons are triangles has been extensively
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studied in [69]. We will not include here the details of the algorithm, including

triangle formation in the initial phase, the intermediate computation, communi-

cation and update. The interested reader is referred to [69]. It is not difficult

to adapt the algorithm in [69] to the problem considered here. We have imple-

mented the modified EPA algorithm (with triangles as the embedded polygons)

and compared it with both Jacobi and OSE. Results are presented in section 3.4.2.

3.4.1 Simulations of the OSE algorithm

In this section, we present numerical simulations to illustrate the performance

of the OSE algorithm, and compare its convergence rate with that of Jacobi

numerically. All the simulations with the OSE algorithm are done for the mea-

surement graph shown in Figure 3.8. The construction of the measurement graph

along with the measurements and their associated error covariances are described

in Section 3.3.3.

Figure 3.12(a) compares the normalized error as a function of iteration number

for the three algorithms discussed in this paper - Jacobi, EPA and the OSE. Two

versions of OSE were tested, 2-hop and 3-hop. It is clear from this figure that

the OSE outperforms both Jacobi and modified EPA. As the figure shows, drastic

improvement was achieved with the flagged initialization scheme. With flagged

initialization, the 2-hop OSE algorithm can estimate the node positions within

3% of the optimal estimate after only 9 iterations. For the flagged OSE, the

normalized error is not defined till iteration number 8, since some nodes had no

estimate of their positions till that time. Figure 3.12(b) shows the performance of

the 2-hop OSE algorithm with flagged initialization under two different link-failure

probabilities. Not surprisingly, higher failure rates result in slower convergence.
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(a) Jacobi and OSE.
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Figure 3.12. (a) Performance comparison between the Jacobi algorithm and the

overlapping subgraph estimator (OSE) algorithm without link failures. The nor-

malized error is defined as ‖x̂(i)−x̂
∗‖

‖x̂∗‖ , where x̂(i) is the vector of estimates at the i-th

iteration and x̂∗ is the optimal estimate. Except for the case with flagged initial-

ization, all of the simulations are run with all initial estimates of node variables

set to 0. For the flagged OSE, the normalized error can be defined only after iter-

ation number 8 because until then not all nodes have valid (finite) estimates. (b)

Performance of 2-hop OSE with link failures. All simulations are run with flagged

initialization. Two different failure probabilities are compared with the case of no

failure. With higher probability of failure, performance degrades but the error is

seen to decrease with iteration count even with large failure probabilities.
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3.4.2 Energy cost comparison

For ad-hoc wireless network applications, the primary metric for comparison

between the algorithms described above is not the number of iterations required

to drive the error below a certain value, but the average energy consumed in order

to do so. The reason is that in ad-hoc wireless sensor networks, one of the main

challenges is to keep the network functional for an extended period of time in

spite of the small battery life of the sensors [84]. Reducing energy consumption is

therefore critical.

The OSE algorithm converges faster than both Jacobi and EPA. However,

faster convergence is achieved at the expense of each node sending and processing

more data. One may then ask whether there is a significant advantage to using

the OSE algorithm. However, the energy cost of sending additional data can

be negligible due to the complex dependence of energy consumption in wireless

communication on radio hardware, underlying PHY and MAC layer protocols,

network topology and a host of other factors.

Investigation into energy consumption of wireless sensor nodes has been rather

limited. Still, we can get an idea of which parameters are important for energy

consumption from the studies reported in [85–87]. It is reported in [87] that

for very short packets (in the order of 100 bits), transceiver startup dominates

the power consumption; so sending a very short message offers no advantage in

terms of energy consumption over sending a somewhat longer message. In fact,

in a recent study of dense network of IEEE 802.15.4 wireless sensor nodes, it is

reported in transmitted energy per bit in a packet decreases monotonically upto

the maximum payload [85]. One of the main findings in [86] was that in highly

contentious networks, “transmitting large payloads is more energy efficient”. On
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the other hand, receive and idle mode operation of the radio is seen to consume as

much energy as the transmit mode, if not more [88]. Thus, the number of packets

sent and received appear to be a better measure to predict energy consumption

than the number of bits.

Due to the reasons outlined above, we take the number of packets transmitted

and received by a node as a measure of its energy consumption. Let N
(i)
tx (u) be

the number of packets a node u transmits to its neighbors during the ith iteration.

The energy E(i)(u) expended by u in sending and receiving data during the ith

iteration is computed by the following formula:

E(i)(u) = N
(i)
tx (u) +

3

4

∑

v∈Nu

N
(i)
tx (v), (3.25)

where Nu is the set of neighbors of u. The factor 3/4 is chosen to account for

the ratio between the power consumptions in the receive mode and the transmit

mode. Our choice is based on values reported in [85] and [89]. The average energy

consumption Ē(ε) is the average (over nodes) of the total of energy consumed

among all the nodes till the normalized error reduces to ε. For simplicity, eq. (3.25)

assumes synchronous updates and perfect communication (no retransmissions).

When packet transmission is unsuccessful, multiple retransmissions maybe result,

making the resulting energy consumption a complex function of the parameters

involved [85, 86].

In one iteration of the Jacobi algorithm, a node needs to broadcast its own

estimate, which consists of k real numbers. Recall that k is the dimension of the

node variables. Assuming a 32 bit encoding, that amounts to 4k bytes of data. In

the OSE algorithm, a node with d neighbors has to broadcast data consisting of

4d bytes for its neighbors’ IP addresses, 4k(d+1) bytes for the previous estimates

of itself and its neighbors, and 3d bytes for time stamps of those estimates. This
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leads to a total of (7 + 4k)d+ 4k bytes of data, and consequently the number of

packets in a message becomes

Ntx(u) = d (7 + 4k)d+ 4k

max databytes pkt
e, (3.26)

where max databytes pkt is the maximum number of bytes of data allowed in the

payload per packet. We assume that the maximum data per packet is 118 bytes,

as per IEEE 802.15.4 specifications [90]. For comparison, we note that the number

of bytes in a packet transmitted by MICA motes can vary from 29 bytes to 250

bytes depending on whether B-MAC or S-MAC is used [91]. If the number of

data bytes allowed is quite small, OSE may require multiple packet transmission

in every iterations, making it more expensive.

The average energy consumption Ē of the three algorithms – Jacobi, modified

EPA and 2-hop OSE – are compared in Figure 3.13. Flagged initialization was

used in all three algorithms. To compute the energy consumption for the 2-

hop OSE, we apply (3.26) with k = 2 and max databytes pkt = 118 to get

Ntx(u) = d(15du + 8)/118e. The average node degree being 5, the number of

packets broadcasted per iteration in case of the OSE algorithm was 1 for almost

all the nodes. For Jacobi, the number of packets broadcasted at every iteration

was 1 for every node. For the modified EPA algorithm, the number of packets in

every transmission was 1 but the total number of transmissions in every iteration

were larger (than Jacobi and OSE) due to the data exchange required in both

the EPA update and EPA solve steps (see [69] for details). The normalized error

against the average (among all the nodes) total energy consumed Ē is computed

and plotted in Figure 3.13. Comparing the plots one sees that for a normalized

error of 1%, the OSE consumes about 70% of the energy consumed by modified

EPA and 60% of that by Jacobi. As lower errors are demanded, the difference

becomes more drastic: to achieve a normalized error of 0.8%, OSE needs only 60%
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Figure 3.13. The normalized error ‖x̂(i)−x̂
∗‖

‖x̂∗‖ vs. average energy consumption of

2-hop OSE, modified EPA and Jacobi with broadcast communication. Flagged

initialization was used in all the three algorithms.

of the energy consumed by EPA and about half of that by Jacobi.

Note that the energy consumption benefits of OSE become more pronounced

as higher accuracy is demanded, but less so for low accuracy. This feature is

due to the flagged initialization, which accounts for almost all the error reduction

in the first few iterations. Note that the energy savings in OSE will occur only

if the extra data can be packed into a small number of packets. In such cases,

the OSE algorithm is advantageous compared to the Jacobi algorithm because

OSE requires a smaller number of iterations – and therefore a smaller number of

messages – compared to Jacobi to achieve a desired error tolerance, resulting in

lower energy consumption and increased network life.

101



3.5 Effect of asymmetric communication

In Section 3.3 we saw that if the communication graph is asymmetric, the

Jacobi algorithm does not converges to the optimal estimate. This raises two

questions:

1. Is it possible to design a distributed algorithm that converge to the optimal

estimate even in the presence of asymmetric communication?

2. How sensitive is the Jacobi algorithm (or some other distributed algorithm)

to the level of asymmetry? In other words, does increasing the level of

asymmetry make the variance of the estimates (that the algorithm converges

to) larger?

3.5.1 An impossibility result

The answer to the first question is, no. This can be seen by the example shown

in Figure 3.14, where the reference variable is x1 = 0 and the measurement error

variances are equal. Consider the case when the communication graph (shown in

Figure 3.14) is time-invariant. It satisfies the conditions of Theorem 3.3.2, and

therefore the Jacobi algorithm converges. However, due to the asymmetry in the

communication graph, the limiting estimate will be different from the optimal

estimate. It is clear from the figure that due to the information flow structure

imposed by the communication graph, node 2 will only have information of the

reference variable, which is 0, and the measurement ζ12. The optimal estimate of

x2 is, however, a combination of all three measurements: x̂∗2 = −2
3
ζ12− 1

3
(ζ13−ζ32).

Clearly no distributed algorithm can converge to the optimal estimate, since in-

formation on ζ13 will never reach node 2. Even if nodes are allowed to transmit
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Figure 3.14. A measurement and communication graph pair in which it is im-

possible for any distributed algorithm to converge to the optimal estimate. The

difficulty arises from the asymmetry in the communication graph that prevents

information of the relative measurements on certain edges from reaching certain

nodes.

their neighbors’ information in addition to their own, as done in the OSE algo-

rithm, similar examples can be constructed that shows the impossibility of optimal

estimation in the presence of communication asymmetry.

It is important to keep in mind that when we say no distributed algorithm

can converge to the optimal estimate when communication asymmetric, we are

talking about algorithms that satisfy the Constraint 3.1.

3.5.2 More measurements need not reduce error

Another important effect of asymmetric communication is that using more

measurements need not lead to more accurate estimates of all node variables -

the variance of some of the node variables’ estimation error can in fact increase.

When communication is symmetric, the Jacobi algorithm converges to the opti-

mal estimate. The optimal estimate has the property that its estimation error

variance can only decrease upon using more measurements. This follows from the

so-called Rayleigh’s monotonicity law of effective resistances; see Theorem 4.6.1 in
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Chapter 4 for details. We conclude that with symmetric communication, having

more measurement edges, regardless of the associated error, produces more accu-

rate (less variance) estimates when either the Jacobi or the OSE algorithm is used.

However, the presence of asymmetry in the communication graph destroys this

monotonicity. We illustrate this effect of asymmetry with a particularly troubling

example, where the addition of a measurement edge causes the error variances of

all the node estimates to increase.

Figure 3.15 shows two measurements graphs G1 and G2 and their associated

communication graphs Gc
1 and Gc

2. The measurement graph G1 contains all the

nodes and edges of the measurement graph G2. Similarly, Gc
1 contains all the nodes

and edges in Gc
1. Every measurement error variance in both the measurements

graphs is unity. The estimation error variances of the limiting estimates x̂∞

computed from Lemma 3.3.1 are shown alongside the graphs. It is clear from the

variances that the estimates in G1 are poorer than those in G2, even though G1

contains more measurements than G2.

3.6 Comments and open problems

Among the questions left unanswered in this Chapter, perhaps the most im-

portant ones are on distributed algorithms for estimating time-varying node vari-

ables and establishing asynchronous convergence results for the Jacobi and OSE

algorithms in the general case of arbitrary positive definite edge covariances (i.e.,

without Diagonal Assumption 3.3.1).

Distributed estimation of node variables that are changing with time, i.e., that

have dynamics, is a challenging problem. It is equivalent to distributed Kalman

filtering, which is an open research problem.
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Figure 3.15. An example of more measurements reducing the estimation accuracy

of the Jacobi algorithm when communication is asymmetric. The figure shows two

measurements graphs G1 and G2, and their associated communication graphs Gc
1

and Gc
2. The variance of every measurement error is 1 for both the measurement

graphs. The estimation error variances of the limiting estimate (that the Jacobi

algorithm converges to) computed from Lemma 3.3.1 are shown alongside the

graphs. Even though G2 ⊂ G1 and Gc
2 ⊂ Gc

1, the resulting estimation error variances

are still higher in (G1,Gc
1) than in (G2,Gc

2).

To prove convergence of the asynchronous version of the algorithms (both

Jacobi and OSE), we had to assume a special structure of the measurement error

covariance matrices (see Diagonal Assumption 3.3.1). The reason is the following.

Consider a linear system of the form Lx = b ∈ Rn with L ∈ Rn×n non-singular,

and let L = M−N be a splitting of L, i.e., M is non-singular. Define the iteration

operator

J : R
n → R

n, x→M−1(Nx + b).
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For the synchronous iteration to converge to the solution L−1b, we need ρ(J) < 1.

The asynchronous iteration (corresponding to the synchronous one above) will

also converge to the solution for every initial condition, if ρ(|J |) < 1, where |J |

represents the matrix obtained by replacing all the entries of J with their absolute

values [92]. This condition is also necessary, i.e., if ρ(|J |) ≥ 1, then there exists an

initial condition and sequence of communication faults for which the asynchronous

iteration will not converge to the solution of Ax = b [92]. The reader is advised to

see [92] and references therein for a review and historical perspective on the subject

of asynchronous parallel iterations. The Diagonal Assumption 3.3.1 allowed us to

reduce the problem to the special case of scalar valued node variables, i.e., k = 1.

The case k = 1 offered us two distinct advantages, one, the iteration matrix

J = M−1N turned out to be non-negative, so we we only had to prove ρ(J) < 1.

The second advantage is that when k = 1, M −N turned out to be an M-matrix,

which allowed us to exploit the available results in the extensive literature on

M-matrices and convergence of parallel iterative methods to show that the OSE

algorithm converges.

In the general case the edge weights are positive-definite matrices and not

positive scalars, J = M−1N is not a non-negative matrix and L = M − N is

not a M-matrix. In fact, for the measurement network described in Section 3.3.3

for which numerical simulations were conducted, ρ|J | > 1. Therefore an asyn-

chronous scheme will not converge in general. However, in both the algorithms

the components of a node variable are always transmitted together, so the asyn-

chronous iterations that are of interest to us have a special structure. Moreover,

the special structure of L indicates that thinking of it as a “block” M matrix,

the Jacobi algorithm still might lead to a provably convergent asynchronous it-

eration. Such generalization of M-matrices have in fact been attempted, though
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in a quite restrictive sense in most cases [93–96]. We believe there is hope for

proving asynchronous iteration convergence with block M-matrices, but in order

to do that a research program in generalizing M-matrices to block M-matrices has

to be undertaken first. So significant technical hurdles remain.

Another useful research direction is the investigation of convergence rates with

random communication faults. For this, second moment convergence has to be

established first. Convergence rate on the second moment of the error with ran-

dom link failures, even for simple failure distributions will be quite useful to the

practitioner. Since the motivation for parallel iterative methods has tradition-

ally been solution of large problems in clusters of powerful machines, which are

connected over a wired network, asynchrony usually comes from delays in the

wired network and varying processor speeds. As a result, in the vast literature

on parallel iterative methods, analysis of convergence with random faults is rare

(one notable exception being the work of Strikwerda [97]). With the recent inter-

est in distributed computation in wireless networks, analysis of parallel iterative

methods with random communication faults may be quite useful.

No analytical results on the convergence rate of the OSE algorithm were ob-

tained here. It was shown through simulations to converge faster. Establishing

convergence rate of the Weighted Additive Schwarz method, to which OSE is

closely related, is recognized to be quite challenging [83]. Obtaining convergence

rate of the OSE algorithm is therefore a challenging open problem, but one that

is also of interest to a wider community.

107



3.7 Proofs

In the proofs, we will use properties of non-negative matrices and M - matrices.

First we show the following:

Proposition 3.7.1. The matrix Lc defined in (3.12) for the graph pair (G,Gc),

for the special case of k = 1, is an M-matrix as long as Assumption 3.1.1 is

satisfied. �

Proof of Proposition 3.7.1. In the case k = 1, the measurement error covariance

Pe on edge e is simply a variance σ2
e . Setting

s := max
u∈V

[D]u,u,

B := sI − Lc,

and applying the Gerschgorin circle theorem [75], we conclude that ρ(B) ≤ s.

This proves that Lc is an M-matrix.

Proposition 3.7.2 (Theorem 2.3(N45) of [78]). Let X be a matrix of class Z,

that is, it is a real square matrix whose off-diagonal terms are non-positive. Then

the following statements are equivalent:

1. there exist a representation X = K − Q with K−1 � 0, Q � 0 such that

ρ(M−1N) < 1.

2. X is a non-singular M-matrix. �

Proof of Lemma 3.3.2. Consider the following discrete-time dynamical system:

e(i+1) = M−1Ne(i), (3.27)
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where e(i) ∈ R
nb. Note that M is invertible by construction since it is a diagonal

matrix and every diagonal element is positive, which is guaranteed by Assump-

tion 3.1.1. Due to the structure of the matrices M−1 and N , (3.27) implies that

in every iteration i, each node u ∈ V computes its new state ei
u as the weighted

average of the states of those nodes v that have an edge (v, u) directed from v

toward u in the graph Gc. In other words, it is a distributed average-consensus al-

gorithm where the reference nodes keep their values at 0, and the remaining nodes

try to reach consensus by averaging with their neighbors. The system (3.27) sat-

isfies the strict convexity assumption of [98]. Thus, from Theorem 2 of [98] we

know that the system (3.27) is uniformly globally attractive with respect to the

collection of equilibrium points (which in this case is {0}) if and only if for every

node u ∈ V \Vr, there is at least one reference node such that there is a directed

path in Gc from the reference ode to u. Note that here we have used a slight

specialization of the results in [98] to the case when one or more agents do not

participate in the consensus algorithm but keep their values fixed. On the other

hand, it follows from (3.27) that e(i) → 0 as i →∞ if and only if ρ(M−1N) < 1.

Since Lc is an M-matrix, it follows from Proposition 3.7.2 Lc = M − N is non-

singular if and only if for every node u ∈ V \ Vr, there is at least one reference

node such that there is a directed path in Gc from the reference ode to u. This

proves the first statement of the theorem.

Proof of Theorem 3.3.3. We only consider the case k = 1 in the proof. The case

for k > 1 follows from Assumption 3.3.1, as explained earlier.

When no edge or node fails permanently, the Jacobi algorithm with time-varying

communication qualifies as an asynchronous iteration as defined in [92, Defn. 2.2].

Now we use Theorem 4.1 from [92] which states that the asynchronous iteration
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corresponding to the synchronous iteration

x←M−1(Nx + b)

converges to the solution of (M−N)x = b, if the following conditions are satisfied:

1. M is non-singular,

2. ρ(|M−1N |) < 1, where, for a matrix X, |X| denotes the matrix obtained by

replacing every entry of X with its absolute value.

The first condition is satisfied by Assumption 3.1.1 as proved in Proposition 3.3.1.

From the condition on existence on paths, it follows that ρ(M−1N) < 1 (see

Lemma 3.3.2). Because of the non-negativity of M and N , which follows from

Diagonal Assumption 3.3.1, we get ρ(|M−1N |) < 1. This proves the first part of

the theorem.

If the existence of path condition is violated, it follows from Lemma 3.3.2 that

ρ(M−1N) ≥ 1, which means the algorithm will not converge. If a communication

edge or node fails permanently, or a communication edge that is not in Gc
init

becomes active at a later time and is active infinitely often, then we can construct a

new “initial” communication graph Gc
2 that includes that communication edge, and

apply the arguments above to conclude that the Jacobi algorithm converges, but

to the solution of Lc2x = bc2 that is defined for (G,G ′2). Assumption 3.1.1 ensures

that Lc changes if the communication graph Gc
init is changed. Therefore, the Jacobi

algorithm cannot converge to the solution of Lcx = bb if a communication edge

that is not in Gc
init becomes active at a later time and is active infinitely often.

To prove almost sure convergence in the presence of random failures, define the
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events:

C = { The Jacobi algorithm converges}

Ee
j = { The communication edge e is active in time j}

Aj = ∩e∈EcEe
k

Aj i.o. = ∩∞j=1 ∪`≥j A`

Occurrence of the event Aj means all the communication edges were active in time

j, i.e., no edge or node failed in that time. If Aj occurs for infinitely many j’s,

i.e., if Aj i.o. occurs, then the algorithm converges, since two sufficient conditions

mentioned above for the convergence of the asynchronous Jacobi algorithm are

satisfied. Therefore,

P(C) ≥ P(Aj i.o. ), (3.28)

where P(·) denotes probability. We will now show that the right hand side above

is 1. Since Aj occurs if and only if every communication edge and every node is

active in time j, we have

P(Aj) = (1− p)m(1− q)n, ∀j.

which is a positive number (since p, q < 1) that does not depend on j. It follows

that

∞∑

j=1

P(Aj) =∞,

and moreover, the events {Aj} are independent since the node or edge failures at

a time step are independent of failures in the past and the future. Therefore, by

the Borel-Cantelli lemma [99], we get

P(Aj i.o.) = 1.
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It follows from (3.28) that

P(C) = 1,

which shows that the Jacobi algorithm converges almost surely.

Proof of Theorem 3.3.4. Recall the decomposition Lc = M−N with M diagonal.

Due to the assumption of symmetric communication, L = Lc and the matrices

L,M,N are symmetric. The iteration counter is updated simultaneously by all

the nodes. The error in the ith iteration, e(i) = x̂(i) − x̂∗ propagates as

e(i) = J ie(0), where J := M−1N.

Since the communication graph is symmetric, it follows from Theorem 3.3.2 that

the Jacobi algorithm converges to the optimal estimates, and ρ(J) < 1. It follows

from the above that

‖e(i)‖
‖e(0)‖ ≤ ρ(J)i ⇒ ε(i) ≤ ρ(J)i,

where the second inequality follows from the definition of the normalized error

in (3.3). It is easy to see from the above that

niter(ε) = d | log ε|
| log ρ(J)|e. (3.29)

From Theorem 5.6 of [78], we have

ρ(J) =
ρ(L−1N)

1 + ρ(L−1N)
= 1− 1

1 + ρ(L−1N)
. (3.30)

Now, L−1N = L−1M − I, and the eigenvalues of L−1M are the same as those of

M
1
2L−1M

1
2 , where M

1
2 is the unique positive definite square root of the positive

definite diagonal matrix M , we get

ρ(L−1N) = ρ(M
1
2L−1M

1
2 )− 1

= ‖M 1
2L−1M

1
2‖ − 1, (3.31)
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where ‖ · ‖ represents the matrix 2-norm and the second equality follows from the

matrix M
1
2L−1M

1
2 being symmetric positive definite. From the definition of the

matrix 2-norm, we have

‖M 1
2L−1M

1
2 ‖ = max

y 6=0

yTM
1
2L−1M

1
2y

yTy

= max
z 6=0

zTL−1z

zTM−1z
,

where z := M
1
2 y. It is straightforward to see that for every vector z, zTM−1z ≥

1
dmax(P )

zT z. Therefore,

‖M 1
2L−1M

1
2 ‖ ≤ max

z 6=0

zTL−1z

zT z
dmax(P ) =

dmax(P )

λmin(L)
,

where λmin(L) denotes the smallest eigenvalue of L. It follows from (3.31) that

ρ(L−1N) ≤ dmax(P )

λmin(L)
− 1

⇒ ρ(J) ≤ 1− λmin(L)

dmax(P )
. ( from (3.30))

It follows from the Gerschgorin circle theorem [100, pg. 498] that all eigenvalues

of L are less than dmax, so λmin(L)
dmax(P )

< 1. Taking logarithm of both sides of the

inequality above, and using log(1− x) > x for 0 < x < 1, we get

| log ρ(G)| ≥ λmin(L)

dmax
.

Plugging it back in (3.29), we get

niter(ε) ≤
⌈
dmax

| log ε|
λmin(L)

⌉
,

which proves the upper bound on the number of iterations required. The proof of

the lower bound is similar, and is therefore omitted.
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Chapter 4

Optimal estimation in infinite

graphs and electrical analogy

4.1 Introduction

In this chapter we take the first steps, and develop the tools needed, toward an-

swering the error scaling question raised in Chapter 1. As discussed in Chapter 2,

we examine the error scaling of the optimal estimator (BLUE), since it achieves

the minimum variance among all linear unbiased estimators, and therefore gives

us an algorithm independent limit on estimation accuracy.

We focus our attention on large measurement graphs in answering the error

scaling question. A large measurement graph can result from a sensor-actuator

network obtained by deploying a large number of nodes. Sensor networks consist-

ing of thousands of wireless nodes are already in test and deployment phase [13].

Large networks are being envisioned for civil as well as defense applications [101].

Large measurement graphs can also result with a small number of physical agents
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that are mobile, since in that case the measurement graph consists of all the vari-

ables and measurements that appear over a time interval of interest. For example,

in the multi-robot localization example described in Section 2.1.4, the nodes of the

measurement graph are the positions of the mobile robots at various time instants.

Upon collecting all the relative measurements over a time interval (0, t), we ob-

tain a measurement graph G(t). In an experiment described in [102], a team of 80

robots were deployed in a “search and protect” mission. If every robot takes rel-

ative position measurements every minute with three other robots on an average,

after an hour the measurement graph will consist of 4800 nodes and 14400 edges.

Thus, large measurement graphs are quite likely in sensor-actuator networks.

To investigate error scaling in a large graph, we consider the limiting situation

of an infinite graph, with a countable number of nodes and edges (i.e., variables

and relative measurements). The results in this Chapter show that as one con-

siders larger and larger numbers of measurements, the minimum estimation error

covariance of a node variable tends to a limiting covariance matrix that is posi-

tive definite. This limiting covariance is characterized by the effective resistance

in an abstract electrical network in which currents, voltages and resistances are

matrix-valued. The main assumption needed is that the graph must have bounded

degree.

It is often easier to establish asymptotic results for infinite graphs than for large

finite graphs, since boundary effects are usually weaker in infinite graphs than in

finite graphs. This advantage is exploited in the next Chapter in obtaining error

scaling laws in infinite measurement graphs. The results of this chapter provides

a formal justification for regarding infinite graphs as suitable proxies for large but

finite graphs.

Chapter Organization: After stating the problem addressed in this Chapter
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precisely in Section 4.2, we summaries the main results and related prior work in

Section 4.3. Generalized electrical networks are introduced in Section 4.4, along

with a few technical results on such networks, so that the main results of the

chapter can be stated, which is done in Section 4.5. We go back to discuss in

more detail generalized electrical networks in Section 4.6, which also describes

a few technical, but crucial results needed to establish the main results of this

Chapter (and also of the next). Section 4.7 provides the proof of the main results,

which is followed by a discussion on relevant open problems in Section 4.8.

4.2 Problem statement

Consider an infinite measurement graph G = (V ,E) with a single reference

node o ∈ V , where the node set V and edge-set E are countably infinite. The

measurement error covariances are specified by an edge-covariance function P :

E → Sk+, where Sk+ is the set of k× k symmetric positive definite matrices. The

pair (G, P ) is called a measurement network. Imagine, for the moment, that we are

interested in the estimate of a particular node u ∈ V . Let Gfinite = (Vfinite,Efinite)

be a finite subgraph of the infinite graph G, that contains both u and o, i.e.,

Vfinite ⊂ V , and Efinite ⊂ E . One can regard the subgraph Gfinite as consisting of

those measurements that are processed upto some time t < ∞. Given the finite

measurement network (Gfinite, P ), it is straightforward to compute the optimal

estimate x̂∗u(Gfinite) of the unknown node variable xu in the network (Gfinite, P ) , as

described in Chapter 2. The covariance matrix of the error in this estimate is

Σu,o(Gfinite) := E[(xu − x̂∗u(Gfinite))(xu − x̂∗u(Gfinite))
T ],

which exists as long Gfinite is weakly connected (see Theorem 2.2.1). As time

goes by, one can process larger subsets of measurements, which can be visualized
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by a sequence of progressively larger finite subgraphs of G. In this context, we are

interested in studying if there is a limit to the estimation accuracy achievable by

processing more and more measurements. Specifically, we want to know if there

is a point beyond which there is little gain in processing more measurements,

as it will not improve the estimate of xu significantly. This raised the following

question:

Limiting accuracy in infinite graphs: Consider an infinite mea-
surement network (G, P ), with the graph G = (V ,E) that has a single
reference node o ∈ V . For every node variable xu, u ∈ V , what is the
minimum possible estimation error covariance that can be achieved by
using an arbitrarily large, finite subset of the measurements available
in E?

Once we characterize the minimum possible estimation error of a node variable

in infinite graphs, in Chapter 5 we examine how this error varies as a function

of the node’s distance from the reference, and how this variation depends on the

structure of the graph. An answer to the error scaling question raised in Chapter 1

is thus answered.

A measurement network is assumed to satisfy the following assumption.

Assumption 4.2.1 (measurement network). The measurement network (G, P )

satisfies the following properties:

1. The graph G is weakly connected.

2. The graph G has a finite maximum node degree1.

3. The edge-covariance function P is uniformly bounded, i.e., there exists

constant symmetric positive matrices Pmin, Pmax such that PminIk ≤ Pe ≤

PmaxIk, ∀e ∈ E .

1The degree of a node is the number of edges that are incident on the node. An edge (u, v)
is said to be incident on the nodes u and v.
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4. The measurement errors on distinct edges are uncorrelated, i.e., if e and e′

are two distinct edges in G, then E[εeε
T
e′] = 0. �

In the above, for two matrices A,B ∈ R
k×k, A > (≥)B means A−B is positive

definite (semidefinite), which is also written as A−B > (≥)0. We write A < (≤)B

if −A > (≥)−B.

To formulate the problem of determining the limiting accuracy in infinite

graphs precisely, we define the limiting BLUE error covariance Σu,o for a node

variable xu in an infinite measurement network (G, P ) as

Σu,o = inf
Gfinite

Σu,o(Gfinite), (4.1)

where the infimum is taken over all finite subgraphs Gfinite of G that contain the

nodes u and o. We define a matrix M ∈ Sk+ to be the infimum of the set S,

where S ⊂ S
k+, and write

M = inf S, (4.2)

if M ≤ A for for every matrix A ∈ S, and for every positive real ε, there exists

B ∈ S such that M + εIk > B. We will show in Section 4.5 that under Assump-

tion 4.2.1, the infimum Σu,o in (4.1) is well-defined and is a symmetric positive

definite matrix. In the sequel, we will often say “limiting BLUE covariance in a

network” without specifying if the network is finite or infinite. When the network

is finite, this phrase should be understood to mean simply the BLUE covariance.

Note that the BLUE covariance above is not defined in terms of the error in

the estimate obtained by using all the infinite number of measurements available

in G. There are two reasons for it. First, in practice, one may have a very large

number of measurements but never an infinite number of them. So establishing

the limit of estimation accuracy that is achievable by using arbitrarily large but
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a finite number of measurements is more relevant from a practical point of view.

The second reason is that characterizing the best linear unbiased estimator and

its covariance for an infinite number of measurements is technically challenging.

4.3 Contributions and prior work

The results established in this chapter are the following:

1. In a measurement network (finite or infinite), the limiting BLUE error co-

variance Σu,o that can be achieved by using arbitrarily large finite subsets of

measurements is equal to a matrix-valued effective resistance Reff
u,v between u

and o in a generalized electrical network, in which currents, voltages and re-

sistances are matrix valued. The electrical network is obtained by assigning

to every edge of the measurement graph a matrix-valued resistance equal to

the covariance of the measurement error on that edge. This result is called

the electrical analogy.

2. We show that for every positive constant ε > 0, it is possible to construct

an unbiased estimate for a node variable xu using only a finite subset of

the available measurements but whose estimation error covariance is only

ε above the minimum possible estimation error variance that could be ob-

tained by considering an arbitrarily large number of the available measure-

ments.

This convergence result provides the formal justification for regarding infi-

nite graphs as suitable proxies for very large but finite graphs, and estab-

lishes the conditions under which such approximation is valid. In particular,

the assumption of finite maximum node degree is needed.
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Another implication of this result is that for estimation problems based on

relative measurements, after a certain point, considering more measurements

will only marginally improve the quality of the estimate. On the positive

side, this simplifies the construction of estimation algorithms in large–scale

networks because it justifies considering a relatively small subset of mea-

surements. Although in Chapter 3, distributed algorithms were proposed

and analyzed to compute the optimal estimates, for a large network these

algorithms may take a long time to provide accurate estimates. The reason

is that information about all the available measurements are fused itera-

tively to determine the estimate of every node variable. The results of this

chapter suggest that it may be possible to devise algorithms such that they

obtain estimates quite fast, while sacrificing little accuracy.

3. The BLUE covariance of a node variable can only decrease upon using more

measurements, and can only increase upon using fewer measurements. This

monotonicity of BLUE covariances is a result of our extension of a classi-

cal result for electrical networks, named Rayleigh’s monotonicity law [2],

to generalized electrical networks. This monotonicity property of matrix-

valued effective resistances is crucial not only in proving all the results in

this chapter, but also in establishing the error scaling laws in Chapter 5.

Prior work: to the best of our knowledge, the question on limiting accuracy

in infinite graphs posed and answered in this chapter has not been investigated

earlier. The analogy between estimator variance and effective resistance, when the

node variables are scalars, was noted by Karp et al. [73] in connection with the

time-synchronization problem. Here we show that an electrical analogy still holds

for vector-valued node variables, provided that we consider generalized electrical

networks in which currents, voltages, and resistors are matrix-valued. Another

120



important distinction with [73] is that the measurement graph was finite in Karp

et al. [73], whereas we allow the measurement graph to be infinite.

The extension of the electrical analogy to infinite graphs requires, among other

things, that the currents and voltages in an infinite, generalized electrical network

are well defined. Our proof that this is so parallels the work of Flanders, who in

1971 provided perhaps the earliest exposition of infinite electrical networks [103].

Although our proof technique is different, the results for infinite generalized elec-

trical networks are direct extensions of Flanders’ results for infinite scalar electrical

networks.

4.4 Generalized electrical networks

A generalized electrical network (G, R) consists of a graph G = (V ,E) (finite

or infinite) together with a function R : E → Sk+ that assigns to each edge e ∈ E
a symmetric positive definite matrix Re called the generalized resistance of the

edge.

Recall that a generalized flow from node u ∈ V to node v ∈ V with intensity

j ∈ Rk×k is an edge-function j : E → Rk×k such that

∑

(p,q)∈E
p=p̄

jp,q −
∑

(q,p)∈E
p=p̄

jq,p =







j p̄ = u

−j p̄ = v

0 otherwise

∀p̄ ∈ V . (4.3)

We say that a flow i is a generalized current when there is a node-function V :

V → Rk×k for which

Ru,viu,v = Vu − Vv, ∀(u, v) ∈ E . (4.4)
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The node-function V is called a generalized potential associated with the current

i. Eq. (4.3) should be viewed as a generalized version of Kirchoff’s current law

and can be interpreted as: the net flow out of each node other than u and v is

equal to zero, whereas the net flow out of u is equal to the net flow into v and

both are equal to the flow intensity j. Eq. (4.4) provides in a combined manner,

a generalized version of Kirchoff’s loop law, which states that the net potential

drop along a circuit must be zero, and Ohm’s law, which states that the potential

drop across an edge must be equal to the product of its resistance and the current

flowing through it. A circuit is an undirected path that start and end at the same

node. For k = 1, generalized electrical networks are the usual electrical networks

with scalar currents, potentials, and resistors.

The energy dissipated by an edge-function j in the network (G, R) is defined

by

‖j‖ :=
(∑

e∈E
trace(jT

e Reje)
) 1

2
. (4.5)

It is straightforward to verify that the set of edge-functions with finite dissipated

energy constitutes a Hilbert spaceHR with inner product 〈j, j̄〉 =
∑

e∈E trace(jT
e Rej̄e),

∀j, j̄ ∈ HR. For infinite networks, the summation in (4.5) is an absolutely con-

vergent series and the order of summation is irrelevant. Flows of finite support

always belong to HR.

4.4.1 Existence and uniqueness of generalized current

Existence and uniqueness of scalar currents in infinite networks has been ex-

amined in [103, 104]. It was shown by Flanders that, unlike in finite networks, in

an infinite electrical network the current is not uniquely determined by Kirchoff’s

laws and Ohm’s law [103]. He showed, however, that uniqueness of current in

122



an infinite network can be established if two additional conditions are imposed:

the current has a finite dissipated energy and it is the limit of flows with finite

support. For this reason, in examining the uniqueness of generalized currents in

infinite networks we restrict ourselves to generalized flows that are limits of finite

support flows and that have finite dissipated energy. For finite networks these

conditions hold trivially.

The following theorem establishes existence, uniqueness, and linearity of gen-

eralized currents and potential differences in generalized electric networks. The

proof of this result is provided in Section 4.9.

Theorem 4.4.1 (Generalized Current). In a generalized electrical network

(G, R) that satisfies Assumption 4.2.1, for every pair of nodes u, v ∈ V and for

every intensity i ∈ Rk×k, among all flows that have finite dissipated energy and

are limits of finite support flows, there exists a unique current i from u to v with

intensity i. In addition,

1. the current is the flow that minimizes the energy dissipation, among all flows

from node u to node v with intensity i, that are limits of finite support flows,

and

2. the current i and the potential difference Vp − Vq (for every p, q ∈ V ) are

linear functions of the intensity i. The potential is unique only upto an

additive constant. �

It was previously known that in a scalar electrical network, the current min-

imizes energy dissipation. This result is known as Thomson’s Minimum Energy

Principle [2, 104]. Theorem 4.4.1 shows that generalized currents also obey Thom-

son’s Principle in both finite and infinite networks.
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4.4.2 Generalized effective resistance

It was shown in the previous section that the potential difference Vu−Vv ∈ R
k×k

associated with a current of intensity i ∈ Rk×k flowing from u to v is a linear

function of i. It turns out that this linear map can be expressed through the

matrix multiplication by a k × k matrix, which is stated next. The proof of this

result is provided in Section 4.9.

Lemma 4.4.1. Let (G, R) be a generalized electric network satisfying Assump-

tion 4.2.1. The linear mapping between i and Vu − Vv can be defined by multipli-

cation by a k × k matrix, which we call the generalized effective resistance Reff
u,v

between u and v:

Vu − Vv = Reff
u,vi, ∀i ∈ R

k×k. �

In the sequel, we will refer to generalized effective resistance simply as effective

resistance. In view of Lemma 4.4.1, the effective resistance between two nodes

is the potential difference between them when a current with intensity Ik, the

k× k identity matrix, is injected at one node and extracted at the other, which is

analogous to the definition of effective resistance in scalar networks [2]. Moreover,

the effective resistance is a symmetric positive-definite matrix. To show this, we

will need the following technical result (also proved in Section 4.9), which will

have additional usefulness in the sequel.

Lemma 4.4.2. Let i ∈ HR be the unique current in the network (G, R) with

intensity i ∈ Rk×k from u to v, and let j be a flow with intensity j ∈ Rk×k from u

to v that can be expressed as a limit of finite support flows. Then,

∑

e∈E
iTe Reje = (Vu − Vv)

T j,
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where V is a generalized potential associated with the current i. Moreover, the

series in the left-hand side converges absolutely, meaning that each one of the k2

series that constitute the matrix-valued left hand side converges absolutely. �

To prove positive-definiteness of effective resistances, set j = i in Lemma 4.4.2,

where both i and j have intensity Ik, to obtain

∑

e∈E
iTe Reie = (Vu − Vv)

T = (Reff
u,v)

T , (4.6)

where the second equality follows from the definition of effective resistance in

Lemma 4.4.1. Since all the generalized edge-resistances Re are symmetric and

positive-definite, we conclude that the left-hand side must be symmetric and

positive-definite, which confirms that effective resistances are indeed symmetric

positive-definite. This is stated below for future reference:

Proposition 4.4.1. For every pair of nodes u, v in a generalized electrical network

(G, P ) that satisfies Assumption 4.2.1, the generalized effective resistance between

them Reff
u,v is a symmetric positive definite matrix. �

4.5 Main results

Given a measurement network (G, P ), we construct an analogous generalized

electrical network (G, P ), that is, by assigning to every edge a matrix-valued

resistance equal to the measurement error covariance of that edge. The generalized

effective resistances in the electrical network (G, P ) precisely characterizes the

minimum estimation error covariances achievable in the measurement network

(G, P ), which is stated in the next theorem. The proof of the theorem is provided

in Section 4.7.
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Theorem 4.5.1 (Electrical Analogy). Consider a measurement network (G, P )

satisfying Assumption 4.2.1 with G = (V ,E) and a single reference node o ∈ V .

Then, for every node u ∈ V \ {o}, the limiting BLUE error covariance Σu,o is

given by

Σu,o = Reff
u,o,

where Reff
u,o is the effective resistance between u and o in the generalized electrical

network (G, P ). �

The proof of this result will follow directly from a more general result that also

explains what happens to the estimates constructed by using arbitrarily large,

finite subsets of the available measurements. To state the result, we need some

preliminaries. For two graphs G1 = (V1,E1), G2 = (V2,E2), the notation G1 ⊂ G2

means V1 ⊂ V2 and E1 ⊂ E2. We now consider a sequence of finite measurement

subgraphs {G(n) = (V(n),E(n))} that satisfies the following assumption.

Assumption 4.5.1 (Nested Sequence). A sequence of finite graphs G(1), G(2),

G(3), . . . has the following properties:

1. The sequence is nested in the sense that

G(1) ⊂ G(2) ⊂ G(3) ⊂ · · · ⊂ G,

2. The sequence converges to the graph G in the sense that every node and

edge in G appears in one of the G(n) for some finite n.

3. Each finite graph G(n), n ∈ N is weakly connected. �

When investigating the error in xu’s estimate, every graph G(n) in such a

nested sequence of finite graphs should contain the reference node o and the node
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n=1
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(a) G(1)

n=2
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(b) G(2)

n=3
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(c) G(3)

Figure 4.1. A nested sequence of measurement graphs that “tend to” the 2-

dimensional square lattice.

of interest u. Figure 4.1 shows the first few elements of such a nested graph

sequence that will eventually converge to the 2-dimensional square lattice (the

formal definition of a lattice will be provided in Section 5.5.1). One could regard

each finite subgraph G(n) as describing a finite subset of available measurements

that could be processed up to some time tn < ∞ to construct an estimate of xu.

As time increases, more measurements can be processed, and therefore at some

time tn+1 > tn, the subgraph G(n+1) contains more measurements than G(n). In

this context, we are interested in studying if there is a point after which there is

little improvement in estimation error upon processing more measurements, and

whether or not the sequence of estimates produced using the nested sequence of

subgraphs converges.

Let x̂
(n)
u denote the best linear unbiased (BLU) estimate of xu in the finite

measurement network (G(n), P ); Chapter 2 describes how to compute this estimate.

This estimate is a linear combination of the measurements ζe, e ∈ E specified by

a set of appropriately chosen coefficient matrices. In particular, the BLU estimate
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is given by

x̂(n)
u =

∑

e∈E(n)

C(n)T
e ζe, (4.7)

where the function C(n) : E(n) → Rk×k specifies the coefficients of the measure-

ments. Note that in the equation above, and in the sequel, for a function f with

the edge set E as the domain, we use fe to denote the value of the function at

an edge e ∈ E . We call the function C (n) the BLU estimator for xu based on the

finite graph G(n).

Every estimator C(n) can be viewed as an element of the real linear vector

space HP consisting of all edge-functions of the form C : E → Rk×k for which

‖C‖2 :=
∑

e∈E
trace(CT

e PeCe) <∞, (4.8)

where each Pe denotes the error covariance matrix for the measurement associated

with the edge e ∈ E . It is straightforward to show that HP is a Hilbert space with

the associated inner product 〈C, C̄〉 =
∑

e∈E trace(CT
e PeC̄e), ∀C, C̄ ∈ HP . We say

that an edge-function in HP has finite support if it has only a finite number of

nonzero entries. Since all the sets E(n) in (4.7) are finite, every estimator C (n) is

a finite-support edge-function in HP .

For infinite graphs, the summation in (4.8) is actually a series. However, the

series is absolutely convergent due to the positive definiteness of the Pe’s, hence

the order of the summation is immaterial and therefore the expression in (4.8) is

well defined.

We now state the second main result of the chapter, which establishes the

convergence of BLU estimators and of the estimates, as n→∞. In the statement

of the theorem, x
(n)
u denotes the BLU estimate of xu in the finite graph G(n): The

proof is provided in Section 4.7.
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Theorem 4.5.2 (BLUE Convergence). Consider a network (G, P ) with a

single reference node o ∈ V that satisfies Assumption 4.2.1. For every node

u ∈ V \ {o}, if {G(n)} is a nested sequence of finite graphs that satisfies Assump-

tion 4.5.1 with u and o belonging to every graph in the sequence, the following

statements hold.

1. The sequence of BLU estimates {x̂(n)
u } converges in the mean-square sense.

2. The sequence of BLU estimators {C (n)} for xu converges to some C ∈ HP .

3. The sequence of BLUE estimation error covariance matrices

Σ(n)
u,o := E[(xu − x̂(n)

u )(xu − x̂(n)
u )T ]

converges to the effective resistance Reff
u,o between u and o in the electrical

network (G, P ), i.e.,

lim
n→∞

Σ(n)
u,o = Reff

u,o.

Moreover, the BLUE covariances decrease monotonically, in the sense that

Σ(1)
u,o ≥ Σ(2)

u,o ≥ · · · . �

Theorem 4.5.2 shows that under the bounded degree assumption, by using only

a finite number of measurements among the infinitely many potentially available,

we can construct estimates whose error variance is arbitrarily close to the mini-

mum possible variance that could be achieved by using an arbitrarily large number

of measurements. In addition, the estimates themselves converge and the “lim-

iting” estimator is square-summable in the sense of (4.8). The theorem tells us

that even when the number of measurements go to infinity, the limiting BLUE

covariance does not go to 0, but to a positive definite matrix.
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Proofs of these results will require developing additional tools by exploiting

the analogy between generalized electrical networks and measurement networks,

which is done in Section 4.6. We briefly discuss how fast the convergence of Σ
(n)
u,o

to Reff
u,o takes place.

4.5.1 Convergence rate

Theorem 4.5.2 shows that the BLU estimator error variance in a sequence of

nested finite subgraphs of an infinite measurement graph converges to a limiting

variance that is numerically equal to an effective resistance, regardless of how the

sequence G(n) is constructed. However, the rate at which the covariances Σ
(n)
u,o

converge to the effective resistance in the infinite graph will depend on how the

sequence {G(n)} is constructed vis-a-vis the nodes u and o. One natural way to

construct the graph G(n) = (V(n),E(n)) is to take V(n) to contain all nodes that

are at a graphical distance smaller than α(n) from the shortest path connecting

u and o, where α(·) is a positive and increasing function. The distance of a node

from a path denotes the minimum graphical distance between the node and any

node lying on the path. If there are multiple shortest paths, we take the union

of the sets obtained for each of the shortest paths. E(n) is then chosen as the

set of edges that are incident on the nodes in V(n). This construction satisfies

Assumption 4.5.1.

Figure 4.2(a-c) shows the first three members of a sequence of nested subgraphs

{Z2(n)} of the 2-dimensional lattice Z2, constructed according to the procedure

outlined above, with α(n) = n. For simplicity, we consider the case of scalar

variables and measurements, and every measurement error is assumed to have a

variance 1. Covariances for vector-valued variables (k > 1) could be obtained

130



n=1

PSfrag replacements

uo

n

Reff
u,o(Z2)

Σ
(n)
u,o

‖Σ(n)
u,o‖/‖Σu,o‖

variance

β(n)

(a) Z2(1)

n=2

PSfrag replacements

uo

n

Reff
u,o(Z2)

Σ
(n)
u,o

‖Σ(n)
u,o‖/‖Σu,o‖

variance

β(n)

(b) Z2(2)

n=3

PSfrag replacements

uo

n

Reff
u,o(Z2)

Σ
(n)
u,o

‖Σ(n)
u,o‖/‖Σu,o‖

variance

β(n)

(c) Z2(3)

1 2 3 4 5
0.5

1

1.5

2

 

 

PSfrag replacements

u

o

n

Reff
u,o(Z2)

Σ
(n)
u,o

‖Σ(n)
u,o‖/‖Σu,o‖

va
ri
an

ce

β(n)

(d) Variance Σ
(n)
u,o of x̂

(n)
u in

(Z2(n), 1) as a function of n (shown

in circles), and the value of the ef-

fective resistance between u and o

in the infinite lattice Z2 (shown as a

dotted line).

0 0.5 1 1.5 2 2.5
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

 

 
d=2
d=4
d=8

PSfrag replacements

u

o

n

Reff
u,o(Z2)

Σ
(n)
u,o

‖Σ
(n

)
u
,o
‖/
‖Σ

u
,o
‖

variance

β(n)

(e) The ratio ‖Σ(n)
u,o‖/‖Σu,o‖ as a

function of β for three different node

pairs u, o in the nested sequence

Z2(n).

Figure 4.2. (a)-(c)The first three members of a sequence of nested subgraphs Z2(n)

of the 2-dimensional lattice Z2, and (d) the plot of variances Σ
(n)
u,o in the sequence

of measurement networks (Z2(n), 1) as a function of n. (e) Trend of the ratio of

variance in the finite subnetworks (Z2(n), 1) to the minimum possible variance in

(Z2, 1), as a function of β(n) for three different node pairs u, o.

using Lemma 4.6.1. Figure 4.2(d) shows the plot of the variances Σ
(n)
u,o of node

u in the measurement network (Z2(n), 1) as a function of n. The limiting value
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of the variance is the effective resistance between u and o in the infinite lattice

Z2. In an infinite 2-dimensional lattice with unit resistance on every edge, the

effective resistance between two nodes u with relative x and y coordinates is

given by Reff
u,o = 1

π
(log

√

x2 + y2 + γ + 1
2
log 8), where γ ≈ 0.577 [105]. For the

example in Figure 4.2(a-c), x = 4, y = 0, so the limiting variance for node u is

Σu,o = Reff
u,o ≈ 0.956, which is shown by a dotted line in the Figure 4.2(d). As

expected, the variances Σ
(n)
u,o monotonically decrease and approach the asymptotic

value as n increases.

For a given nested sequence G(n), the convergence rate of Σ(n) to Σ will depend

on the graphical distance du,o between nodes u and o. Taking this into account, we

can construct the sequence G(n) by choosing V(n) as the set of nodes that are within

a graphical distance of β(n)du,o of the shortest path connecting u and o, where

β(·) is a positive and increasing function. Numerical studies on the 2-dimensional

lattice Z2 indicate that with this construction, the ratio ‖Σ(n)
u,o‖/‖Σu,o‖ depends

only on the value of β and is independent of du,o. Figure 4.2(e) shows the ratio

‖Σ(n)
u,o‖/‖Σu,o‖ as a function of β for three different nodes taken at distances of 2,

4 and 8, respectively, from o. The figure shows that the rate of convergence of

Σ
(n)
u,o to the limiting value Σu,o is not sensitive to the distance between u and o. In

particular, with β = 2, the error between Σ
(n)
u,o and Σu,o is less than 10%.

These studies show that in a 2-dimensional lattice, a relatively small subgraph

is sufficient to obtain an estimate whose variance is quite close to the minimum

possible achievable by using all the measurements. For an arbitrary measurement

graph, as long as the graph is “close to” a lattice in an appropriate sense, similar

trends are expected. Appropriate measures of closeness to lattices are developed

in Chapter 5.
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4.6 Properties of generalized electrical networks

4.6.1 Rayleigh’s monotonicity law

The next result relates the effective resistances of two distinct networks re-

lated by an appropriate partial order. A similar result for finite scalar networks,

called Rayleigh’s Monotonicity Law [2], states that if the edge-resistances in a

scalar electrical network are increased (perhaps even made infinity, i.e., an open

circuit), then the effective resistance between every pair of nodes in the network

can only increase. For a long time, Rayleigh’s Monotonicity Law was considered

so evidently true that no proof was deemed necessary. Nevertheless, Doyle and

Snell [2] provided a proof, which we now extend to generalized electrical networks.

To present the result in full generality, we introduce the notion of graph em-

bedding. We say that a graph G = (V ,E) can be embedded in another graph

Ḡ = (V̄ , Ē) if V ⊂ V̄ , and, for every edge between two nodes in G, there is a

corresponding edge between them in Ḡ. More precisely, G can be embedded in Ḡ

if

1. there exists an injective map η : V → V̄ , and

2. for every e ∈ E , there exists ē ∈ Ē such that, if e ∼ u, v then ē ∼ η(u), η(v).

In other words, G is a subgraph of Ḡ when they are thought of as undirected. In

the sequel, we use G ⊂ Ḡ to denote that G can be embedded in Ḡ. In addition,

when η : V → V̄ is the embedding of G into Ḡ, for every edge e ∈ E , we use the

somewhat loose notation η(e) to denote the edge in Ē that corresponds to the

edge e.
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Theorem 4.6.1 (Generalized Rayleigh’s Monotonicity Law). Consider two

generalized electrical networks (G, R) and (Ḡ, R̄) for which G can be embedded in

Ḡ with an embedding function η : V → V̄ , i.e., G ⊂ Ḡ, and Re ≥ R̄η(e) for every

e ∈ E . For every pair of nodes u, v of G,

Reff
u,v ≥ R̄eff

u,v,

where Reff
u,v and R̄eff

u,v are the effective resistances between u and v in the networks

(G, R) and (Ḡ, R̄), respectively. �

Proof of Theorem 4.6.1. Let i : E → Rk×k and ī : Ē → Rk×k be the currents

from u to v in the networks (G, R) and (Ḡ, R), respectively, both with intensity

i ∈ Rk×k. Denote by η(E) the set of edges in Ē that correspond to the edges in

E . Define j̄ : Ē → Rk×k to be the following “extension” of the current i to the

graph Ḡ

j̄e =







iη−1(e) e ∈ η(E)

0 e ∈ Ē \ η(E)

where η−1(e) represents the pre-image of e in the set E , thinking of η as a mapping

from E to Ē . We conclude that j̄ satisfies Kirchoff’s current law (4.3) for the

network (Ḡ, R) and is therefore a flow for this network (although not necessarily a

current). Since according to Theorem 4.4.1 the current ī is the flow of minimum
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dissipated energy for the network (Ḡ, R), we conclude that

trace(
∑

e∈Ē
īTe R̄e īe) ≤ trace(

∑

e∈Ē
j̄T
e R̄ej̄e)

≤ trace(
∑

e∈η(E)

j̄T
e R̄ej̄e)

= trace(
∑

e∈E
iTe R̄eie)

≤ trace(
∑

e∈E
iTe Reie),

where the first inequality is due to η(E) ⊂ Ē and the summation involving positive

numbers, the equality is a consequence of the definition of j̄, and the last inequality

follows from the fact that R̄η(e) ≤ Re, ∀e ∈ E . From this, Lemma 4.4.2, and the

definition of effective resistance, we conclude that

trace(iT R̄eff
u,vi) ≤ trace(iTReff

u,vi),

for every i ∈ Rk×k, from which the result follows.

Remark 4.6.1 (Role of edge directions). Effective resistances are independent of

the directions of the edges in the graph. Reversing the direction of an edge e

simply reverses the sign of the current ie on that edge. It follows from (4.6) that

the effective resistance between any two nodes is unaffected by the edge-directions.

Rayleigh’s monotonicity offers further evidence of this fact. Therefore, from now

on we use G ⊂ Ḡ to denote that G can be embedded in Ḡ. Note that the graph

partial order defined in Assumption 4.5.1 can now be understood to mean graph

embedding; the results of Theorem 4.5.2 do not change in doing so.

It follows from the electrical analogy Theorem 4.5.1 that, although a measure-

ment graph is directed because of the need to distinguish between a measurement

of xu − xv and that of xv − xu, the BLUE covariances are independent of edge

directions. �
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4.6.2 Other properties

The next result shows that if the scalar effective resistances in an electrical

network with 1-Ohm resistors is known, then the generalized effective resistances

upon putting a single matrix resistance on every edge can be deduced from them.

Its proof is provided in Section 4.9.

Lemma 4.6.1. For a graph G with finite maximum node degree, let reff
u,v denote

the scalar effective resistance between two nodes u and v in an a scalar electrical

network (G, 1) that has 1-Ohm resistors on every edge of the graph G. Let (G, Ro)

be a generalized electrical network constructed from the same graph G by assigning

a generalized resistance Ro ∈ Sk+ to every edge of G. Then,

Reff
u,v = reff

u,vRo. �

It turns out that matrix-valued effective resistances obey the triangle inequal-

ity. It is known that scalar effective resistance obeys triangle inequality, and is

therefore also referred to as the “resistance distance” [106]. Although the result

in [106] was proved only for finite networks, it is not hard to extend it to infi-

nite networks as well. Application of Lemma 4.6.1 then leads to the following

simple extension of the triangle inequality to generalized networks with constant

resistances on every edge.

Lemma 4.6.2 (Triangle Inequality). Let (G, Ro) be a generalized electrical

network satisfying Assumption 4.2.1 with a constant resistance Ro ∈ Sk+ on every

edge of G. Then, for every triple of nodes u, v, w in the network,

Reff
u,w ≤ Reff

u,v +Reff
v,w. �

The next result states that we can replace parallel edges by a single edge of ap-

propriate resistance so that the effective resistances in the network are unchanged.
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Recall that two edges e1 and e2 are said to be parallel if they are incident on the

same set of nodes (irrespective of the direction of the edges). A similar result was

stated without proof for finite graphs in Section 2.2.3. The proof of the proposition

is provided in Section 4.9.

We assume that the edge set E is specified as E = {E1,E2, . . . }, such that if

e ∈ Ej for some j, then all the edges parallel to e also belong to Ej.

Proposition 4.6.1 (Parallel Resistors). Consider a generalized electrical net-

work (G, P ) satisfying Assumption 4.2.1. Let Ej ⊂ E , j = 1, . . . be subsets of

parallel edges as described above. The effective resistance between every pair of

nodes remain the same if every set Ej is replaced by a single edge ej with edge

resistance Rej
that is specified by

R−1
ej

:=
∑

e∈Ej

R−1
e . �

The reader may notice that the above rule is simply the application of the

parallel resistance formula to generalized resistances. The proof of the result is

provided in Section 4.9.

4.6.3 Approximating infinite network currents

The next theorem shows that currents and effective resistances in an infinite

network can be approximated with arbitrary accuracy by those in a sufficiently

large but finite subnetwork. A similar result for the usual scalar electrical networks

was established by Flanders [103, 104]. The proof of the theorem, which is inspired

by [103], is provided in Section 4.9.

Theorem 4.6.2 (Finite Approximation). Let (G, R) be a network satisfying

Assumption 4.2.1, {G(n)} a nested sequence of finite graphs satisfying Assump-
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tion 4.5.1, and u, v two arbitrary nodes that appear in every graph G(n). For an

arbitrary i ∈ Rk×k, let i and i(n) denote the currents from node u to node v in

the infinite network (G, R) and in the finite network (G(n), R), respectively, with

intensity i. Then,

lim
n→∞

i(n) = i,

where convergence is in the HR-norm. In addition, denoting by Reff
u,v and R

eff(n)
u,v the

effective resistances between nodes u and v in the networks (G, R) and (G(n), R),

respectively, we have

lim
n→∞

Reff(n)
u,v = Reff

u,v. �

This result will be instrumental in showing that the BLU estimator error

covariances in large finite networks converges to the effective resistance in the

limiting infinite network.

4.6.4 Electrical analogy for finite networks

In a finite measurement network, the BLUE covariance of a node variable

xu is the same as the generalized effective resistance between u and o in the

corresponding electrical network, which is stated in the next theorem.

Theorem 4.6.3 (Finite Electrical Analogy). Let (G, P ) be a measurement

network with a finite weakly connected graph G = (V ,E) and an edge-covariance

function P : E → Sk+, with node o as the reference node. For every node u ∈

{V \ o}, the following statements hold.

1. The BLU estimator C of xu in the finite measurement network (G, P ) is

equal to the current i with identity intensity Ik in the generalized electrical
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network (G, P ) from u to o:

C = i.

2. The covariance Σu,o of the BLU estimation error xu − x̂u is equal to the

effective resistance Reff
u,o between the node u and the reference node o:

Σu,o = Reff
u,o �

It was shown in Section 2.2.1 that the BLU covariance of the vector of all node

variables is given by the inverse of the Dirichlet Laplacian L (see Theorem 2.2.1).

It follows from the result above that the effective resistances in a finite network

are the k × k blocks on the diagonal of L−1. This is stated formally in the next

corollary.

Corollary 4.6.1. Consider a finite generalized electrical network (G, R) satisfy-

ing Assumption 4.2.1 where G = (V ,E) consists of n nodes, of which one is a

reference node. Let the reference node be numbered as the nth node and the others

be numbered as 1, . . . , n− 1. Then, the effective resistance between the node with

index u and the reference node n is given by

Reff
u,n = (φT

u ⊗ Ik)L−1(φu ⊗ Ik)

where φu ∈ Rn−1 has all zeros except an 1 at the uth location, and L is the Dirichlet

Laplacian of G w.r.t. the boundary {n} and edge-weights R−1
e . �

Proof of Theorem 4.6.3. From Proposition 2.2.1 on the characterization of opti-

mal estimators of node variables in finite graphs and the definition of energy

dissipation (4.5), we see that in a finite network (G, P ) with reference node o, the
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BLU estimator C of node variable xu is given by

C = arg min ‖j‖

subject to: j is a flow of intensity Ik from u to o.

Comparing with the electrical network problem, we conclude from Theorem 4.4.1

that the BLU estimator C of xu is the current i of intensity Ik from u to o in the

generalized electrical network (G, P ), which proves the first statement.

Since C = i, it follows from Unbiased Estimator Lemma 2.2.2 that the covariance

of xu’s BLU estimation error is given by

Σu,o =
∑

e∈E
iTPeie = Reff

u,o,

where the second inequality follows from (4.6), which proves the second statement.

4.7 Proof of the main results

First we prove the BLUE convergence Theorem 4.5.2, using the tools developed

so far.

Proof of Theorem 4.5.2. We will prove the statements of the theorem in reverse

order.

Since the sequence of BLU covariances Σ
(n)
u,o is the same as the sequence of effective

resistances R
eff(n)
u,o ( Finite Electrical Analogy Theorem 4.6.3), and the sequence

R
eff(n)
u,o converges to the effective resistance Reff

u,o in the infinite network (Finite

Approximation Theorem 4.6.2), we have

Σ(n)
u,o = Reff(n)

u,o → Reff
u,o.
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Moreover, by the construction of the nested sequence {G(n)}, if n1 ≤ n2, then

G(n1) ⊂ G(n2), and so by Rayleigh’s monotonicity law (Theorem 4.6.1),

Σ(1)
u,o ≥ Σ(2)

u,o ≥ . . . ,

from which the third statement of the theorem follows.

The BLU estimator C(n) of xu in the finite network (G(n), P ) is equal to the current

i(n) in the generalized electrical network (G(n), P ) (Finite Electrical Analogy The-

orem 4.6.3), and the currents i(n) converge to the unique current i in the electrical

network (G, R) (Finite Approximation Theorem 4.6.2). Therefore

C(n) = i(n) → i =: C,

where the convergence is in the HP -norm. This proves the second statement.

By definition of the BLU estimator, we get

x̂(n)
u =

∑

(p,q)∈E (n)

C(n)T
p,q (xp − xq + εp,q)

= xu +
∑

(p,q)∈E (n)

C(n)T
p,q εp,q, (4.9)

where the second equality follows from unbiasedness, since otherwise the expecta-

tion of the left hand side would not be equal to xu. Let n < l, so that from Nested

Sequence Assumption 4.5.1, G(n) ⊂ G(l). It follows from the uncorrelated-ness of

the ε’s and (4.9) that

E[(x̂(l)
u − x̂(n)

u )(x̂(l)
u − x̂(n)

u )T ] =
∑

e∈E(l)

(C(l)
e − C(n)

e )TPe(C
(l)
e − C(n)

e ),

where we have used the convention that C
(n)
e = 0 if e ∈ E (l) \E (n). This leads to

trace
(
E[(x̂(l)

u − x̂(n)
u )(x̂(l)

u − x̂(n)
u )T ]

)
= ‖C(l) − C(n)‖2,
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where ‖ · ‖ is the HP -norm. Since C(n) → i, ‖C(l) − C(n)‖ → 0 as n,m → ∞.

Therefore,

lim
n→∞

sup
l≥n

trace
(
E[(x̂(l)

u − x̂(n)
u )(x̂(l)

u − x̂(n)
u )T ]

)
= 0. (4.10)

We recall that a sequence of random variables {ηn} converges in the mean square

sense if and only if (proposition 6.3 in [107])

lim
n,l→∞

sup
l≥n

E[ |ηl − ηn|2] = 0.

Therefore, the sequence of random vectors x̂
(n)
u converge entry-wise in the mean

square sense. This proves the first statement and completes the proof.

It was shown in the previous section that for finite measurement networks, the

effective resistance is the same as the BLUE covariance. The Electrical Analogy

Theorem 4.5.1 is an extension of this analogy to infinite networks, which follows

as a consequence of Theorem 4.5.2.

Proof of Theorem 4.5.1. When the graph G is finite, the statement of the theorem

follows from Finite Electrical Analogy Theorem 4.6.3.

When G is infinite, consider a sequence {G(n)} of nested finite subgraphs of the

infinite graph G that satisfies the Nested Sequence Assumption 4.5.1. We know

from the BLUE convergence Theorem 4.5.2 that the sequence of BLU estimation

error co-variance matrices Σ
(n)
u,o converges monotonically to the effective resistance

Reff
u,o, i.e.,

Σ(1)
u,o ≥ Σ(2)

u,o ≥ . . . , and lim
n→∞

Σ(n)
u,o = Reff

u,o.

It is straightforward to show that Reff
u,o = inf{Σ(n)

u,o, n ∈ N} according to the matrix

infimum definition (4.2). That is, Reff
u,o ≤ Σ(n) ∀n ∈ N, and for every ε > 0, ∃n
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such that Reff
u,o + εIk > Σ

(n)
u,o. Now we will show that Reff

u,o is also the infimum of

the set

S := {Σu,o(Gfinite), Gfinite ⊂ G,Gfinite is finite}.

If Gfinite is an arbitrary finite subgraph of the infinite graph G, then ∃n ∈ N such

that Gfinite ⊂ G(n). By the Finite Electrical Analogy Theorem 4.6.3 and Rayleigh’s

monotonicity law Theorem 4.6.1, we have Σ
(n)
u,o ≤ Σu,o(Gfinite). Since Reff

u,o ≤ Σ
(n)
u,o,

we have that Reff
u,o is a lower bound of the set S defined above.

To show that Reff
u,o is the largest lower bound, pick an ε > 0 and pick m ∈ N

such that Reff
u,o + εIk > Σ

(m)
u,o . Such an m exists since Reff

u,o is the infimum of

{Σ(n)
u,o}. Now pick any finite subgraph Gfinite of G such that Gfinite ⊃ G(m). From

the electrical analogy for finite networks and Rayleigh’s Monotonicity Law, we

have Σ
(m)
u,o ≥ Σu,o(Gfinite). Thus, for every ε > 0, we can find a finite subgraph

Gfinite of G such that Reff
u,o + εIk ≥ Σu,o(Gfinite). We therefore have Reff

u,o = inf S.

This proves that the infimum Σu,o of (4.1) is well defined, and is equal to the

effective resistance Reff
u,o, which concludes the proof.

4.8 Comments and open problems

In this chapter we provided a formal justification for using infinite graphs as

valid approximation of large but finite graphs, and established conditions under

which this approximation is valid. For example, the condition of bounded de-

gree of the graph (see Assumption 4.2.1) is seen to be important in the proof of

convergence results.

On the other hand, certain important classes of graphs, such as scale free

graphs [108] and random geometric graphs [109], have unbounded degree. In a

143



random geometric graph of n nodes, the average degree of a node has to be Ω(log n)

to ensure connectivity with high probability [109]. Scale-free graphs exhibit a

heavy-tailed degree distribution so that some nodes have very large degrees with

very small probability. As a result, it is not possible – at least within the confines

of the techniques used here – to study these graphs by examining the behavior

of the limiting infinite graph. It is unclear what will it take to study effective

resistance in infinite graphs with unbounded degree.

The BLUE convergence Theorem 4.5.2 points to an interesting direction for

designing distributed algorithms. The theorem shows that when an infinite num-

ber of measurements are available, the estimate of a node variable based on a

finite subset of the measurements can be arbitrarily close to the estimate that can

be obtained by using all the available measurements. This suggests that using

small subsets of available measurements can give us estimates that are quite close

to the optimal. How to design distributed algorithms to take advantage of this

feature is an open question.

4.9 Technical proofs

We first introduce some terminology. Define a norm for all node-functions

ω : V → Rk×k as

‖ω‖ =




∑

u∈V
trace(ωT

uωu)





1
2

=




∑

u∈V
‖ωu‖2F





1
2

, (4.11)

where ‖ · ‖F denotes the Frobenius norm of a matrix, and a linear vector space

SV as the space of all bounded node-functions with respect to the above defined
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norm:

SV = {ω : V → R
k×k| ‖ω‖ <∞}. (4.12)

For an infinite network (G, R), we introduce the incidence operator A : HR → SV ,

which is defined by the transformation:

(A j)u =
∑

e∈E
au,eje, j ∈ HR, (4.13)

where au,e is nonzero if and only if the edge e is incident on the node u and when

nonzero, au,e = −1 if the edge e is directed towards u and au,e = 1 otherwise. The

incidence operator A is simply an extension to infinite graphs of the generalized

incidence matrix defined in Section 2.2.1 [see (2.3)] for finite graphs. The series

in (4.13) is absolutely convergent since it involves only a finite number of terms

due to the bounded degree of G.

We call a node-function ω ∈ SV a divergence for the graph G if ω has finite

support and
∑

u∈V ωu = 0. One can view a divergence as an assignment of flow

sources at a finite number of nodes of the graph so that total flow into the graph

is equal to the total flow out of it.

An edge-function j ∈ HR is called a flow in G with divergence ω ∈ SV if ω is

a divergence in G and j satisfies

∑

(u,v)∈E
u=ū

ju,v −
∑

(v,u)∈E
u=ū

jv,u = ωū, ∀ū ∈ V . (4.14)

The condition (4.14) can be compactly represented as

A j = ω. (4.15)

An edge-function j ∈ HR is called a circulation in (G, R) if

A j = 0. (4.16)
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In other words, a circulation is an element of HR that belongs to N (A ), the null

space of A .

First we show that the linear operator A : HR → SV defined above is bounded.

Since for each u ∈ V , (Aj)u ∈ Rk×k, we have

‖(A j)u‖2F = ‖
∑

e∈Eu

aueje‖2F ≤
∑

e∈Eu

‖je‖2F

where Eu is the set edges in E that are incident on u. It can be shown from

the relationship between the Frobenius norm and the singular values of a matrix

that for every edge e ∈ E , we have ‖je‖2F ≤ 1
λmin

trace(jT
e Reje), where λmin is the

uniform lower bound on the smallest eigenvalue of Re, ∀e ∈ E . Existence of a

positive λmin is guaranteed by Assumption 4.2.1. Since the above is true for every

u ∈ V , from (4.11) we get

‖A j‖2 =
∑

u∈V
‖(A j)u‖2F ≤

1

λmin

∑

u∈V

∑

e∈Eu

trace(jT
e Reje)

≤ dmax

λmin

∑

e∈E
trace(jT

e Reje) =
dmax

λmin

‖j‖2,

where dmax is the largest degree of the nodes of the graph G, which is finite by

Assumption 4.2.1. It follows that

‖A ‖ ≤
√

dmax

λmin
,

which shows that A is bounded.

Now we are ready to prove the Infinite Current Theorem 4.4.1.

Proof of Theorem 4.4.1. We first prove that among the flows inHR that are limits

of finite support flows, the flow with the minimum dissipated energy exists and is

unique, and that this flow is a current. Then we show that there can be only one

such current.
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For a flow of intensity j that is injected at u and extracted at v, the corresponding

divergence ω̄ is given by ω̄u = j, ω̄v = −j and ω̄p = 0 for all p ∈ V \ {u, v}. Pick

a path P from u to v, and construct a flow jpath of intensity j from u to v along

P as follows:

jpath
e =







j e ∈ P, ~e = ~P

−j e ∈ P, ~e 6= ~P

0 e /∈ P

It is easy to see that j is a finite support edge-function in HR that satisfies the

constraint equation A j = ω̄. All flows satisfying this constraint lie in the linear

variety jpath +N (A ), where N (A ) is the null space of A . Since A is a bounded

linear operator, its null space is closed. As a result, N (A ), which is the space of all

circulations, is a Hilbert space. Consider the subspace ofN (A ) that consists of all

finite support circulations, and denote it by NF (A ) (“F” for finite support). Its

closure NF (A ) is a closed subspace of the Hilbert space N (A ). By the Projection

Theorem applied to linear varieties (Theorem 1 in section 3.10 of [62]), there exists

a unique edge-function in jpath +NF (A ) of minimum norm, which we call i, and

which is orthogonal to NF (A ).

Since i − jpath ∈ NF (A ), there exists a sequence of finite support circulations

c(n) such that c(n) → (i − jpath), where the convergence is in HR norm. Define

j(n) := jpath + c(n), so that by construction, each j(n) is a finite support flow of

intensity i from u to v, and j(n) → i in HR. This establishes the existence and

uniqueness of the flow with minimum power dissipation that is the limit of a

sequence of finite support flows.
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Since i is orthogonal to NF (A ),

〈i, c〉 = 0 (4.17)

for every every c ∈ NF (A ). Declare the generalized potential drop across an edge

e as Reie to satisfy Ohm’s law. If the graph has no loops, Kirchoff’s loop law is

trivially satisfied by these generalized potential drops. If the graph has loops, pick

a loop C and define a scalar edge-function f : E → R as

fe =







1 if e ∈ C and ~e = ~C,

−1 if e ∈ C and ~e 6= ~C,

0 if e /∈ C.

Now define a finite support circulation c∗ as c∗e = feJ , where J is an arbitrary

k × k matrix. We have

0 = 〈i, c∗〉 =
∑

e∈C
trace(iTe Rec

∗
e)

=
∑

e∈C
fe trace(iTe ReJ) =

∑

e∈C
fe trace(JTReie)

= trace

[

JT (
∑

e∈C
feReie)

]

Since this is true for arbitrary J , we must have

∑

e∈C
[fe(Reie)] = 0, (4.18)

which in turn must be true for every loop C, since the arguments above can be

repeated for every loop. Eq. (4.18) therefore shows that the net potential drop

along every loop is 0. In other words, the generalized potential drops determined

by i in accordance with Ohm’s law satisfies Kirchoff’s loop law. Construction of a

generalized node potential function V is now trivial. Therefore i is a generalized

current.
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To prove uniqueness of the current, let i and ī be two currents from u to v with

intensity i. Define an edge-function d : E → Rk×k as de := ie − īe. We see that

d ∈ NF (A ). From linearity of the inner product,

〈d, d〉 = 〈i− ī, i− ī〉 = 〈i, d〉 − 〈̄i, d〉 = 0− 0,

where the last equalities follows from (4.17), since by construction, both i and ī

are currents. It follows that

∑

e∈E
trace(dT

eRede) = 0 ⇒ de = 0 ∀e ∈ E ,

since Re > 0 for all edges e ∈ E . We therefore conclude that i = ī, which proves

that the current i is unique.

To examine the uniqueness of potentials, suppose that V and V̄ are two potentials

associated with the same current. Because of Ohm’s Law, we conclude that

Vu − Vv = V̄u − V̄v ⇒ Du = Dv, ∀(u, v) ∈ E ,

where D = V − V̄ . Since G is connected, D must be a constant, but is otherwise

arbitrary. This shows that the node potentials are unique up to an additive

constant.

If i is a current with intensity i and ī is a current with intensity ī, both from u

to v, it can be shown in a straightforward manner that αi + βī is also a current

with intensity αi + β ī from u to v, from which the linearity from i to i follows. A

similar linearity proof also holds for the potential differences.

The corollary presented next is essentially a repetition of (4.17), but is restated

because of its usefulness in several subsequent proofs.

149



Corollary 4.9.1. A flow i is the generalized current in the network (G, R) if and

only if

〈i, c〉 = 0

for every circulation c ∈ NF (A ). �

Next we prove that the linear mapping between intensity and voltage drop

between the source node and sink node is given by a k × k matrix.

Proof of Lemma 4.4.1. For the current with intensity i flowing from u to v, we

define a divergence ω as

ωp = 0 ∀p ∈ V \ {u, v}, ωu = i, ωv = −i.

The flow constraint now becomes Aj = ω. The current i is the flow that satisfies

this constraint and minimizes the energy dissipation
∑

e∈E trace(jT
e Reje), as shown

in Theorem 4.4.1. For every node p ∈ V , the flow constraint becomes

(Aj)p = ωp ⇒
∑

e∈Ep

ap,eje = ωp. (4.19)

Recognizing that this is a k×k matrix equation, we express it as k separate vector

equations:

∑

e∈Ep

ap,eje,l = ωp,l, l = 1, . . . , k,

where the second subscript l represents the lth column of the corresponding matrix.

It is easy to see that, for every l, the constraints on the lth column of je’s depend

only on the lth column of ωp, and therefore on the lth column of i. As a result, the

solution to this optimization problem is equivalent to solving k separate problems

“minimize
∑

e∈E j
T
e,lReje,l subject to Ajl = ωl”, for l = 1, . . . , k, where the edge
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function jl and the node function ωl are now vector-valued: jl : E → R
k, ωl : V →

Rk, the spaces HR and SV are appropriately redefined, and the incidence operator

A has the same definition as in (4.13) with respect to the new spaces HR, SV .

Because of column-wise independence of the current on the intensities, the matrix

current on every edges is obtained by stacking the k vector-valued currents on

that edge as columns. For every vector-valued current intensity il, l = 1, . . . , k,

we obtain a corresponding vector-valued potential difference Vu,l − Vv,l. Again,

the matrix-valued potential difference Vu−Vv resulting from the original problem

consists of the k columns that are the vector-valued potential difference Vu,l−Vv,l

resulting from the k separate optimization problems described above.

These k separate optimization problems can be solved to determine the vector-

valued edge currents in the same manner that the single optimization problem was

solved in the proof of Theorem 4.4.1 to determine the matrix valued edge currents.

In fact, only one of these k problems needs to be solved. To understand why, we

first note that the linearity between the matrix valued quantities i and Vu − Vv

that was established in Theorem 4.4.1 will be retained between the corresponding

vector-valued quantities. Specifically, when a vector-valued current il flows from

u to v with vector intensity il, the vector-valued voltage drop Vu,l − Vv,l will be a

linear function of the vector intensity il, which will be in general a k × k matrix.

Let Reff
u,v ∈ R

k×k be this matrix. Then,

Vu,l − Vv,l = Reff
u,vil, ∀il ∈ R

k. (4.20)

From linearity, the same is true for every l = 1, . . . , k. Stacking together the k

columns in (4.20), for l = 1, . . . , k, we get Vu − Vv = Reff
u,vi, which proves that

the linear mapping between matrix intensity i and matrix-valued potential drop

Vu − Vv is the k × k matrix Reff
u,v.
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Proof of Lemma 4.4.2. Pick a path P from u to v, and construct a flow jpath of

intensity j from u to v along P as follows:

jpath
e =







j e ∈ P, ~e = ~P

−j e ∈ P, ~e 6= ~P

0 e /∈ P

The assumed properties of j imply that j ∈ jpath +NF (A). Let j(n) be a sequence

of finite support flows in (G, R) that converge to the flow j, i.e., j(n) → j in HR.

Define

c := j − jpath

c(n) := j(n) − jpath.

The function c ∈ HR is a circulation since it is the difference between two flows

of the same intensity between the same two nodes. Moreover, {c(n)} is a sequence

of finite-support circulations that converge to c in HR. Now, since c(n) is a finite

support circulation, from Corollary 4.9.1, 〈i, c(n)〉 = 〈i, jpath − j(n)〉 = 0 for every

n, and therefore

lim
n→∞
〈i, jpath − j(n)〉 = 0,

Using linearity and continuity of the inner product, we therefore conclude that

lim
n→∞
〈i, j(n)〉 = 〈i, jpath〉 ⇒ 〈i, j〉 = 〈i, jpath〉

⇒
∑

e∈E
trace(iTe Reje) =

∑

e∈P
trace((Reie)

T jpath
e ) = trace((Vu − Vv)

T j) (4.21)

Since i, j ∈ HR, denoting the sth column of ie by is,e and the tth column of je by

jt,e, we can show from (4.21) using straightforward algebraic manipulation that

qs,t :=

∞∑

e=1

iTs,eRejt,e <∞. ∀s, t = {1, . . . , k},
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and that the series converges absolutely for every s and t. Define the matrix Q

by [Q]s,t = qs,t. Since the series converges, for every ε > 0, we can choose N large

enough such that

‖
N∑

e=1

iTe Reje −Q‖ < ε,

where ‖ · ‖ represents any matrix norm. We thus conclude that since i, j ∈ HR,

the series
∑

e∈E i
T
e Reje converges absolutely to a k× k matrix. Since (4.21) holds

for an arbitrary j, it can be shown in a straightforward manner that the series

∑

e∈E i
T
e Reje must converge to (Vu − Vv)

T j. Therefore we get the desired result

∑

e∈E
iTe Reje = (Vu − Vv)

T j.

We now prove the Finite Approximation Theorem 4.6.2.

Proof of Theorem 4.6.2. For every ε > 0, we can find a finite-support flow j (n)

from u to v of intensity i such that

‖i− j(n)‖ < ε, (4.22)

which follows from the characterization of the current i in Theorem 4.4.1. Pick

a finite subgraph G(n) = (V (n),E (n)) of G from the nested sequence {G(n)} such

that the support of j(n) lies in G(n) (i.e., the edges on which j(n) is not zero are

in E (n)). Note that by construction u, v ∈ V (n). Denoting by i(n) the current in

(G(n), R), it follows from Corollary 4.9.1 that for a circulation c(n) whose support

lies in G(n),

〈i(n), c(n)〉 = 0, and 〈i, c(n)〉 = 0.

⇒ |〈i− j(n), c(n)〉| = |〈i, z(n)〉 − 〈j(n), c(n)〉|

= |〈i(n), c(n)〉 − 〈j(n), c(n)〉|

= |〈i(n) − j(n), c(n)〉|.
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Pick c(n) = i(n) − j(n), which, being a difference of two finite support flows from

u to v with the same intensity, is a finite support circulation. Furthermore, its

support lies in G(n) since both i(n) and j(n) have their support in G(n). For this

choice of c(n) in the equation above, we get

|(i− j(n), i(n) − j(n))| = ‖i(n) − j(n)‖2

⇒ ‖i(n) − j(n)‖2 ≤ ‖i− j(n)‖‖i(n) − j(n)‖,

from the Cauchy Schwarz inequality. Therefore,

‖i(n) − j(n)‖ ≤ ‖i− j(n)‖ < ε,

from (4.22). From the triangle inequality, we now get

‖i− i(n)‖ ≤ ‖i− j(n)‖+ ‖i(n) − j(n)‖ < 2ε,

which proves the statement that i(n) → i in HR.

To prove the convergence of the effective resistances, pick an arbitrary i ∈ Rk×k

and let i and i(n) be the currents with intensity i from u to v in (G, R) and (G(n), R),

respectively. It follows from Lemma 4.4.2 that

∑

e∈E
iTe Reie = iTReff

u,vi,

∑

e∈E
i(n)T
e Rei

(n)
e =

∑

e∈E(n)

i(n)T
e Rei

(n)
e = iTReff(n)

u,v i,

∑

e∈E
iTe Rei

(n)
e = iTReff

u,vi,

where the last equality uses the fact that i(n) is a flow in G with intensity i (though

not a current). Therefore,

∑

e∈E
trace

(
(i− i(n)

e )TRe(ie − i(n)
e )
)

= trace
(
iT (Reff(n)

u,v − Reff
u,v)i

)

Since i→ i(n) in HR, the left hand side goes to 0 as n→∞. Since this is true for

arbitrary i, R
eff(n)
u,v → Reff

u,v.
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Proof of Lemma 4.6.1. Let is : E → R be the scalar current in (G, 1) of unit

scalar intensity from u to v. It follows from (4.6) that

reff
u,v =

∑

e∈E
(ise)

2.

We first claim that the matrix current i in (G, Ro) of intensity Ik from u to v is

given by isIk.

To prove this claim, let c ∈ NF (A). Since i ∈ HR trivially,

〈i, c〉 =
∑

e∈E
trace(iTe Roce) =

∑

e∈E
ise trace(Roce)

=
∑

e∈E
ise trace(c̄e) =

∑

e∈E
ise

k∑

l=1

c̄(l,l)e

where c̄e := Roce ∈ Rk×k for every e ∈ E , and c̄
(l,m)
e ∈ R represents the (l, m)th

scalar entry of the matrix c̄e. Hence,

〈i, c〉 =
∑

e∈E

k∑

l=1

isec̄
(l,l)
e =

k∑

l=1

∑

e∈E
isec̄

(l,l)
e =

k∑

l=1

〈is, c̄(l,l)〉 (4.23)

where the k inner products on the right hand side are evaluated in the space H1

defined for the scalar network (G, 1). Since c is a circulation, Ac = 0. Therefore

∑

e∈Ep

ap,ec̄e = Ro

∑

e∈Ep

ap,ece = 0, ∀p ∈ V ,

where Ep is the set of edges in G that are incident on p, which shows that c̄ is

also a circulation. Clearly, each scalar valued edge function c̄(l,m) : E → R is also

a circulation for the scalar electrical network (G, 1). It follows that 〈is, c̄(l,l)〉 = 0

for each l = 1, . . . , k. Hence, (4.23) implies

〈i, c〉 = 0

for every c ∈ N (A), which is precisely the characterization of the current in HR

stated in Corollary 4.9.1. This proves our claim that isIk is the current in (G, Ro).
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Therefore, the effective resistance is given by

Reff
u,v =

∑

e∈E
iTe Roie = Ro

∑

e∈E
(ise)

2 = Ror
eff
u,v,

because of (4.6), which completes the proof.

Proof of Proposition 4.6.1. Pick an arbitrary j. Without loss of generality, as-

sume that all the edges in Ej are directed in the same way (cf. Remark 4.6.1).

Construct a network (G ′, R′), where G ′ = (V ,E ′), such that every set Ej ⊂ E is

replaced by a single edge ej ∈ E ′, and the edges resistances are assigned as

R′−1
ej :=

∑

e∈Ej

R−1
e . (4.24)

The orientation of ej is taken as that of the edges in Ej. That is, if the edges in

E j are incident on u and v and directed from u to v, then ej := (u, v).

Let i : E → Rk×k be the current in the network (G, R) with intensity Ik from p

to q, where p, q are two arbitrary nodes in G. Assign a flow i′ : E ′ → R
k×k in the

graph G ′ as

i′ej :=
∑

e∈Ej

ie, j ∈ N. (4.25)

We will show first that i′ is the current in (G ′, R′) with intensity Ik from p to q.

It is easy to see that i′ Kirchoff’s current law (4.3). To check if Kirchoff’s voltage

law and Ohm’s law are satisfied, pick an arbitrary j, and let the edges in Ej be

directed from u to v for some u, v ∈ V . Let ` be the number of edges in the set

Ej, and denote the edges in Ej as e1, e2, . . . , e`. Since the potential drop between

u and v in the network (G, R) is

Vu − Vv = Re1ie1 = Re2ie2 = · · · = Re`
ie`
, (4.26)
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we get

R′
ej i′ej

=




∑

e∈Ej

R−1
e





−1

(ie1 + ie2 + . . . ie`
)

=




∑

e∈Ej

R−1
e





−1

(
ie1 +R−1

e2
Re1ie1 + · · ·+R−1

e`
Re1ie1

)

= Re1ie1 = Vu − Vv.

This shows that i′ is a current in the network (G ′, R′) with node potential function

V - the same as in (G, R). Therefore, the potential drop between p and q, which

is the effective resistance between them, is the same in the two networks. The

same argument applies to all node pairs, which proves the result.
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Chapter 5

Error scaling laws

5.1 Introduction

In this chapter we answer the error-scaling question on estimation with relative

measurements, that was raised at the beginning of Chapter 1. We want to examine

how the minimum possible estimation error of a node variable xu varies with the

node’s distance from the reference node o in a large measurement graph, and how

this variation is affected by the structure of the measurement graph.

As discussed in Chapter 1 and again in Section 4.1, the error scaling question is

important for large measurement graphs. Therefore we consider the limiting case

of infinite graphs, in which the number of variables and available measurements

are countably infinite. It was shown in the preceding chapter that the optimal

estimation error of a node variable in a large but finite subgraph of the infinite

graph can be made arbitrarily close to the error in the infinite graph, by making the

finite graph sufficiently large. Intuitively, for a fixed node, as the graph becomes

larger and larger, it appears to extend to infinity in all directions from the point of
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view of the node. Therefore, as long as we are interested in the error covariance of a

node that is sufficiently inside a large graph (i.e., not too close to the boundary),

conclusions drawn for infinite graphs are applicable to large but finite graphs.

The advantage is that analyzing infinite graphs is often easier, since boundary

conditions are not as important in an infinite graph as it is in a finite graph. In

addition, the minimum estimation error achievable in an arbitrarily large graph

can be characterized by the limiting BLUE covariance in an infinite graph that

was defined in the previous chapter. For this reason, in this chapter we examine

the scaling laws for the BLU estimation error covariance in infinite measurement

graphs.

The structure of a measurement graph has a direct bearing on how the esti-

mation error of a node variable varies with its distance from the reference. When

the measurement graph is a tree, there is a single path between the uth node and

the reference node and one can show that the covariance matrix of the estimation

error is the sum of the covariance matrices associated with this path. Thus, for

trees, the variance of the optimal estimation error of xu grows linearly with the

distance of node u from the reference node. It turns out that for graphs “denser”

than trees, with multiple paths between pairs of nodes, the variance of the optimal

estimation error can grow less than linearly with distance.

However, the notion of denseness of a graph is not easy to define. In classical

graph-theoretic terminology, a graph with n vertices is called dense if its average

node degree is of order n, and is called sparse if its average node degree is a

constant independent of n [110]. Recall that the degree of a node refers to the

number of edges that are incident on it. An edge (u, v) is said to be incident on

the nodes u and v. In the sensor network literature that examines the accuracy of
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location estimation from range measurement, graph density is recognized to affect

estimation accuracy; although graph density is measured by the average number

of nodes per unit area of a deployed network [15, 16]. However, none of these

measures determines how the estimation error scales with the size of the graph,

as we will see through examples in Section 5.3.3.

A notion of graph denseness and sparseness that is useful in predicting error

scaling laws can be developed by examining the relationship between the graph

and a lattice. The d-dimensional square lattice Zd is defined as a graph with a

node in every point in Rd with integer coordinates and an edge between every

pair of nodes that have a Euclidean distance 1 between them (see Figure 5.3

for examples). The error scaling laws for a lattice measurement graph can be

determined analytically by exploiting the symmetry of the lattice.

When the graph is not a lattice, it can still be compared to a lattice. Intu-

itively, if a graph, after some bounded perturbation in its node and edge set, looks

approximately like a d-dimensional lattice, the graph is as dense as a lattice. In

that case the error covariance in the lattice can be used to bound the error co-

variance in the graph. It also turns out that the graphs that can be compared to

lattices in this manner are realistic models of sensor networks obtained by placing

nodes in a geographical area in an ad-hoc fashion. Thus, the error scaling laws

obtained for these graphs turn out to be quite useful in design and deployment of

realistic sensor networks.

Chapter organization: After outlining the contributions of this chapter in Sec-

tion 5.2, we pose the error scaling problem precisely in Section 5.3. This section

also contains the main results of this chapter in the form of theorems and lem-

mas. Although the characterization of graphs according to how fast the errors
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grow with distance are provided in the beginning of Section 5.3, in Section 5.4 we

return to these graphs for a more extensive discussion of their properties. Sec-

tion 5.5 starts with scaling laws for lattices and a close relative of theirs, and hints

at how these can be extended to a much broader class by thinking of graphs as

coarse approximation of Euclidean spaces, and ends by providing the formal proof

of the scaling laws that were stated earlier in Section 5.3. The chapter ends with

a discussion of open problems in Section 5.6.

5.2 Contributions and prior work.

The results established in this chapter and their implications are summarized

below:

1. We derive a classification of graphs, dense and sparse graphs in R
d, d =

1, 2, 3, that determines the rate at which the limiting BLUE covariance of a

node variable changes with the node’s distance from the reference. For dense

graphs, upper bounds on the growth rate of the error, and for sparse graphs,

lower bounds on the estimation error growth, are obtained. In particular,

when a graph is dense in 1D, 2D, and 3D, respectively, the error covariance

of a node is upper bounded by a linear, logarithmic, and bounded function of

its distance from the reference. On the other hand, when a graph is sparse

in 1D, 2D, and 3D respectively, the error covariance of a node is lower

bounded by a linear, logarithmic, and bounded function of its distance from

the reference.

2. The error scaling laws derived in this chapter puts an algorithm-independent

limit to the estimation accuracy achievable in large networks, since no esti-

161



mation algorithm can achieve higher accuracy than the optimal estimator.

For this reason, the bounds and the associated graph classification can be

useful in performance analysis, design, and deployment of large networks.

For example, when a graph is sparse in 1D, the optimal estimation error co-

variance grows at least linearly with the distance from the reference. There-

fore the estimation accuracy will be necessarily poor in 1D sparse graphs.

Recognizing the sparseness of the graph will help the user to realize that,

either high estimation accuracy cannot be achieved, or more reference nodes

need to be introduced. On the other hand, when a graph is dense in 3D, the

optimal estimation error of every node variable remains below a constant,

even for nodes that are arbitrary far away from the reference node. So ac-

curate estimation is possible in 3D dense graphs. One can therefore try to

deploy networks that satisfy denseness properties so that guarantees on the

estimation error can be provided a-priori.

3. We show that graphs obtained by placing nodes in a geographical area in

an ad-hoc fashion are likely to fall into one of the classes of graphs identi-

fied here. Since we now know which structural properties are beneficial for

accurate estimation, and such structures are achievable by realistic sensor

networks, we can strive to achieve those structures in deploying a network.

4. The results described in this chapter expose certain misconceptions that

exist in the sensor network literature about the relationship between graph

structure and estimation error. In Section 5.3.3, we provide examples that

show the inadequacy of the usual measures of graph denseness, such as node

degree, in determining scaling laws of the estimation error.

The material presented in this chapter was published in a preliminary form in [111].
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Prior work: Although the problem of estimation from relative measurements

appears in several sensor and ad-hoc network applications, there has been no

systematic study on the effect of network structure on the achievable estimation

error. Among all the possible applications discussed in Section 2.1, localization

and time-synchronization in sensor networks have attracted the most interest from

the research community.

However, the the majority of the existing literature on localization is concerned

with developing algorithms for estimating locations from relative range measure-

ments alone, as discussed in Section 2.1.1. Notwithstanding this major difference

of the problem formulation, the few papers that have attempted to examine the

effect of various parameters on the accuracy of localization from range measure-

ments, such as [15, 16, 37, 112], fails to provide a clear answer to the question of

how network structure affects estimation accuracy. Most of the papers concluded

that high node degree is beneficial to estimation accuracy [15, 37].

There is a substantial body of literature on time-synchronization from relative

clock offset measurements, but the typical estimation algorithms do not attempt to

compute the optimal estimates. To the best of our knowledge, optimal clock offset

estimation from relative measurements was examined for the first time by Karp

et al. [73], and thereafter by Barooah et al. [65], Barooah and Hespanha [67] and

then by [113]. However, the focus of these papers was distributed computation of

the estimates and not the examination of network structure’s effect on achievable

estimation accuracy.
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5.3 Problem statement and main results

Recall that in this chapter we consider the problem of estimating a countably

infinite vector-valued variables xu ∈ Rk, u ∈ V := {1, 2, . . . }, from noisy relative

measurements of the form:

ζu,v = xu − xv + εu,v, (u, v) ∈ E

where εu,v denotes a zero-mean measurement noise and E is the set of ordered

pairs (u, v) for which relative measurements are available. We assume that the

value of a particular reference variable xo is known, and without loss of generality

we take xo = 0. The node set V and the edge set E together define a directed

measurement graph G = (V ,E).

The accuracy of a node variable’s estimate, measured in terms of the covariance

of the estimation error, depends on the graph G as well as the measurement

errors. The covariance matrix of the error εu,v in the measurement ζu,v is denoted

by Pu,v, i.e., Pu,v := E[εu,vε
T
u,v]. The measurement errors on different edges are

uncorrelated, i.e., for every pair of distinct edges e, ē ∈ E , E[εeε
T
ē ] = 0. The

estimation problem is now formulated in terms of a network (G, P ) where P :

E → Sk+ is a function that assigns to each edge (u, v) ∈ E the covariance matrix

Pu,v of the measurement error associated with the edge (u, v) in the measurement

graph G.

The problem is to determine how the BLUE covariance Σu,o scales as a function

of the distance of node u from the reference o, and how this scaling law depends

on the structure of the measurement graph G. In view of the electrical analogy

established in the previous chapter, specifically Theorem 4.5.1, the question can

be equivalently posed in terms of the generalized effective resistance. In the sequel,
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we only deal with the effective resistance. Now we define a classification of graphs

for which the scaling laws for the effective resistance, and thereby of the optimal

estimation error, can be determined.

Remark 5.3.1 (Assumptions). Recall from Chapter 4 that a measurement network

is assumed to satisfy the conditions of Assumption 4.2.1, which stipulates that the

measurement graph is weakly connected, it has a finite maximum node degree,

and the edge covariances are uniformly bounded. In this chapter, we impose

the additional assumption that there are no parallel edges in the measurement

graph. This assumption is not restrictive since parallel measurement edges can be

combined into a single one with an appropriate covariance, which preserves the

BLUE covariances, which follows from Proposition 4.6.1 and the analogy between

BLU covariance and effective resistance. �

5.3.1 Graph denseness and sparseness

We start with graph drawing, which will allow us to define dense and sparse

graphs.

5.3.1.1 Graph drawing

The drawing of a graph G = (V ,E) in a d-dimensional Euclidean space is

obtained by mapping the nodes into points in Rd by a drawing function f : V →
Rd. A drawing is also called a representation of a graph [60]. For a particular

drawing f of a graph G = (V ,E), given two nodes u, v ∈ V the Euclidean distance

between u and v induced by the drawing f : V → R
d is defined by

df(u, v) := ‖f(v)− f(u)‖,
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where ‖ · ‖ denoted the usual Euclidean norm in R
d. It is important to emphasize

that the definition of drawing does not require edges to not intersect and therefore

every graph has a drawing in every Euclidean space. In fact, every graph has an

infinite number of drawings in every Euclidean space. However, some drawings

are more useful than others in clarifying the relationship between the graph and

the Euclidean space in which it is drawn. It is this relationship that is the key to

defining an appropriate measure of graph denseness and sparseness.

For a particular drawing f and induced Euclidean distance df of a graph

G = (V ,E), four parameters can be used to characterize graph denseness and

sparseness. The minimum node distance, denoted by s, is defined as the minimum

Euclidean distance between the drawing of two nodes

s := inf
u,v∈V
v 6=u

df(u, v).

The maximum connected range, denoted by r, is defined as the Euclidean length

of the drawing of the longest edge

r := sup
(u,v)∈E

df(u, v).

The maximum uncovered diameter , denoted by γ, is defined as the diameter of

the largest open ball that can be placed in Rd such that it does not enclose the

drawing of a node

γ := sup
{

δ : ∃Bδ s.t. f(u) /∈ Bδ, ∀u ∈ V
}

,

where the existential quantification spans over the balls Bδ in Rd with diameter δ

and centered at arbitrary points. Finally, the asymptotic distance ratio, denoted

by ρ, is defined as

ρ := lim
n→∞

inf
{df(u, v)

dG(u, v)
: u, v ∈ V and dG(u, v) ≥ n

}

,
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where dG(u, v) denotes the graphical distance between u and v in the graph G.

Essentially ρ provides a lower bound for the ratio between the Euclidean and the

graphical distance for nodes that are far apart. The asymptotic distance ratio

can be thought of as an inverse of the stretch for geometric graphs, which is a

well-studied concept for finite graphs [114].

If the asymptotic distance ratio ρ is positive for the drawing of graph, or

its maximum connected range r is finite, it says something about the relation be-

tween the graphical distances between nodes the Euclidean distance between their

drawings, which is stated in the next result. The proof is provided in Section 5.7.

Lemma 5.3.1 (ρ vs. linear growth). The following two statements are equiv-

alent:

1. The asymptotic distance ratio ρ is strictly positive.

2. There exist constants α > 0, β > 0 for which

dG(u, v) ≤ αdf(u, v) + β, ∀u, v ∈ V .

Similarly, the following statements are equivalent:

1. The maximum connected range r is finite.

2. There exist real constants α > 0 ,β ≥ 0 for which

df (u, v) ≤ αdG(u, v) + β, ∀u, v ∈ V . �

In other words, when ρ > 0, small Euclidean distance in the drawing implies

small graphical distance in the drawing. On the other hand, when r < ∞, small

graphical distance implies small Euclidean distance.
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PSfrag replacements

r

s = 1

γ

u∗

v∗

p∗ q∗

Figure 5.1. A drawing of a graph in 2D Euclidean space, and the corresponding

denseness and sparseness parameters. Since the minimal distance between any

two nodes is 1, so the minimum node distance is s = 1. Since the longest edge

is between u∗ and v∗, of length
√

10, the maximum connected range is r =
√

10.

The diameter of the largest ball that can fit inside the drawing without enclosing

any node is 2, the maximum uncovered diameter is thus γ = 2. The minimal ratio

between the Euclidean and graphical distance of a pair of nodes is achieved by the

pair p∗, q∗, hence the asymptotic distance ratio is ρ = df (p
∗, q∗)/dG(p∗, q∗) = 1/5.

5.3.1.2 Dense and Sparse Graphs

The drawing of a graph for which the maximum uncovered diameter is finite

(γ < ∞) and the asymptotic distance ratio is positive (ρ > 0) is called a dense

drawing . We say that a graph G is dense in Rd if there exists a dense drawing of

the graph in Rd. Intuitively, these drawing are dense in the sense that the nodes

can cover R
d without leaving large holes between them and still having sufficiently

many edges so that a small Euclidean distance between two nodes in the drawing
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guarantees a small graphical distance between them.

A graph drawing for which the minimum node distance is positive (s > 0) and

the maximum connected range is finite (r < ∞) is called a civilized drawing [2].

A graph G is said to be sparse in Rd if there exists a civilized drawing of it in

Rd. Intuitively, these drawings are sparse in the sense that one can keep the edges

with finite lengths without cramping all nodes on top of each other.

Remark 5.3.2 (historical note). A graph that is sparse in Rd is a graph that can

be drawn in a civilized manner in Rd; where the notion of “a graph that can be

drawing a civilized manner” was introduced by Doyle and Snell [2] in connection

with random walks. In this dissertation we refer to such graphs as sparse graphs

since they are the antitheses of dense graphs. �

A graph can be both dense and sparse in the same dimension. For example,

consider the d-dimensional square lattice Zd, which is defined as a graph with a

node in every point in Rd with integer coordinates and an edge between every

pair of nodes that have a Euclidean distance 1 between them (see Figure 5.3

for examples). We can conclude from the definition of a lattice (which defines a

drawing as well) that the d-dimensional lattice is both sparse and dense in Rd.

However, there is no civilized drawing of the d-dimensional lattice in Rd for any

d < d. Moreover, there is no dense drawing of the d-dimensional lattice in R
d̄ for

every d̄ > d. This means, for example, that the 3D lattice in not sparse in 2D and

is not dense in 4D. In general, a graph being dense in a particular dimension puts

a restriction on which dimensions it can be sparse in. The next result, proved in

Section 5.4.2, states this precisely.

Lemma 5.3.2. If a graph is dense in R
d for some d ≥ 1, it is not sparse in R

d

for every d < d. �
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Euclidean space

Covariance matrix Σu,o of
the estimation error of xu

in a sparse graph with a
civilized drawing f ′

d

Covariance matrix Σu,o of
the estimation error of xu

in a dense graph with a
dense drawing fd

R Σu,o(G) = Ω
(

df ′

1
(u, o)

)

Σu,o(G) = O
(

df1(u, o)
)

R2 Σu,o(G) = Ω
(

log df ′

2
(u, o)

)

Σu,o(G) = O
(

log df2(u, o)
)

R
3 Σu,o(G) = Ω

(

1
)

Σu,o(G) = O
(

1
)

Table 5.1. Covariance matrix Σu,o of xu’s optimal estimate for graphs that are

dense or sparse in Rd. In the table, dfd
(u, o) denotes the Euclidean distance

between node u and the reference node o for any drawing fd : V → Rd that

establishes the graph’s denseness in the Euclidean space Rd, and df ′

d
(u, o) denotes

the Euclidean distance in any drawing f ′
d that establishes the graph’s sparseness

in Rd.

5.3.2 Error scaling laws

The concepts of dense and sparse graphs allow one to characterize precisely

how the BLUE error covariance Σu,o grows with the distance of the node u from

the reference o in infinite measurement graphs. The following theorem, proved in

Section 5.5.3, establishes the scaling laws for the BLUE error covariances in dense

and sparse graphs. The theorem is an answer to the error scaling question raised

in Chapter 1.

Theorem 5.3.1 (Error Scaling Laws). Consider a measurement network (G, P )

that satisfies Assumption 4.2.1, such that the graph G = (V ,E) has a reference

node o ∈ V . Then, the limiting BLUE error covariance Σu,o for every node

u ∈ V \ {o} obeys the scaling laws shown in Table 5.1. �
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In Table 5.1, the usual asymptotic notations Ω(·) andO(·) are used with matrix

valued functions in the following way. For a matrix-valued function g : R→ Rk×k

and a scalar-valued function p : R→ R, the notation g(x) = O(p(x)) means that

there exists a positive constant xo and a constant matrix A ∈ Sk+ such that

g(x) ≤ Ap(x) for all x > xo. Similarly, g(x) = Ω(p(x)) means there exists a

positive constant xo and a constant matrix B ∈ Sk+ such that g(x) ≥ Bp(x) for

all x > xo. Recall that S
k+ is the set of all k × k symmetric positive definite

matrices.

If a graph is both sparse and dense in a particular Euclidean space Rd, the

asymptotic upper and lower bounds for the error covariance is the same. The

effective resistance in such a graph grows with distance in the same rate as it

grows in the d-D lattice. Intuitively, such a graph behaves approximately like a

lattice.

Since a graph can be dense and sparse in multiple dimensions, one may wonder

if it is possible to encounter the situation in which a graph is dense in R2 as well

as sparse in R, which will lead to a logarithmic upper bound in one drawing and

a linear lower bound in another drawing. Such an undesirable situation, however,

is precluded by Lemma 5.3.2.

5.3.3 Counterexamples to conventional wisdom

It was pointed out in Section 5.1 that typically, the average node degree of a

graph or the number of nodes and edges per unit area of a deployed network is used

as a measure of graph denseness. However, these measures do not predict error

scaling laws. The three graphs in Figure 5.2 offer an example of the inadequacy

of node degree as a measure of denseness. It shows a 3-fuzz of the 1D lattice (see
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Section 5.4 for the definition of a lattices and fuzzes), a triangular lattice, and

a 3-dimensional lattice. It can be verified from the definitions in Section 5.3.1.2

that the 3-fuzz of the 1D lattice is both dense and sparse in R, the triangular

lattice is dense and sparse in R2, and the 3D lattice is dense and sparse in R3.

Thus, it follows from Theorem 5.3.1 that the BLU estimation error scales linearly

with distance in the 3-fuzz of the of the 1D lattice, logarithmically with distance

in the triangular lattice, and is uniformly bounded with respect to distance in the

3D lattice, even though every node in each of these graphs has the same degree,

namely six.

5.4 Dense and sparse graphs

The dense and sparse graphs defined in Section 5.3.1.2 have a special relation-

ship with lattices and a close relative of lattices - called lattice fuzzes – in terms

of embedding.

Recall that the d-dimensional square lattice Zd is defined as a graph with a

node in every point in Rd with integer coordinates and an edge between every

pair of nodes that have a Euclidean distance 1 between them (see Figure 5.3 for

examples). The h-fuzz of a graph G, introduced by Doyle and Snell [2] is a graph

with the same set of nodes as G but with a larger set of edges. Given a graph

G and a a positive integer h, the h-fuzz of G, denoted by G(h), is the graph that

has an edge between two nodes u and v whenever the graphical distance between

them in G is less than or equal to h. The graphical distance dG is evaluated

without regards to edge directions. In view of remark 4.6.1, the edge directions

are irrelevant so long as we are interested only in the effective resistance.
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(a) A 3-fuzz of a 1D lattice

(b) A triangular lat-
tice

(c) A 3D lattice

Figure 5.2. Three measurement graphs that show vastly different scaling laws

of the estimation error, whereas each has the same node degree for every node.

Furthermore, they are all “sparse” according to traditional graph-theoretic termi-

nology (see the discussion on graph denseness in Section 5.1).
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(a) 1D lattice Z1 (b) 2D lattice Z2 (c) 3D lattice Z3

Figure 5.3. Lattices.

Recalling the definition of embedding from Section 4.6.1, and noting that there

are no parallel edges by assumption (see Remark 5.3.1), we note that G can be

embedded in Ḡ if it can be made a subgraph of Ḡ by relabeling its nodes and

disregarding edge directions. Recall also that we write G ⊂ Ḡ to denote G can be

embedded in Ḡ.

5.4.1 Relationship with lattices

The next theorem shows that fuzzes of dense graphs can embed lattices. The

proof of the result is provided in Section 5.7. We use dZd
(·) to denote the graphical

distance in Zd and df(·) to denote the Euclidean distance in Rd induced by a

drawing f .

Theorem 5.4.1 (Dense Embedding). A graph G = (V ,E) is dense in R
d if

and only if there exists finite, positive integers h and c such that the following

conditions are satisfied

1. G(h) ⊃ Zd, and,
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2. if η : VZd
→ V is an embedding of Zd into G(h), then, ∀u ∈ V , ∃ū ∈

η(VZd
) ⊆ V such that dG(u, ū) ≤ c.

Moreover, if f : V → Rd is a dense drawing of G in Rd and η is an embedding

function that satisfies condition (2) above, then the following is also true: ∀u, v ∈

V , we can find uz, vz ∈ VZd
which satisfies

dG(u, η(uz)) ≤ c, dG(v, η(vz)) ≤ c

dZd
(uz, vz) ≤ 4d+

√
d

γ
df(u, v)

(5.1)

where γ is the maximum uncovered diameter of the f -drawing of G. �

In other words, G is dense in Rd if and only if (i) the d-dimensional lattice can

be embedded in an h-fuzz of G for some positive integer h and (ii) every node of G

that is not the image of a node in Zd is at a uniformly bounded graphical distance

from a node that is the image of a node in Zd. The significance of (5.1) is that

not only can we find for every node in G a close-by node that has a pre-image in

the lattice, but also these close-by nodes can be so chosen that if the Euclidean

distance between a pair of nodes u and v in a dense drawing of the graph is small,

then the graphical distance in the lattice between the pre-images of their close-by

nodes is small as well.

The next theorem shows that a graph that is sparse in Rd can be embedded

in a fuzz of the d-dimensional lattice. The proof of the theorem is provided in

Section 5.7.

Theorem 5.4.2 (Sparse Embedding). A graph G = (V ,E) is sparse in Rd

if and only if there exists a positive integer h such that G ⊂ Z
(h)
d . Moreover, if

f : V → Rd is a civilized drawing of G in Rd, then there exists an embedding
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η : V → VZd
so that ∀u, v ∈ V ,

dZd
(η(u), η(v)) ≥

√
d

(
1

s
df(u, v)− 2

)

. (5.2)

, where s is the minimum node-distance of the f -drawing of G. �

In other words, G is sparse in Rd if and only if G can be embedded in an

h-fuzz of a d-dimensional lattice. The significance of (5.2) is that if the Euclidean

distance between a pair of nodes in a civilized drawing of the graph is large, the

graphical distance in the lattice between their corresponding nodes is also large.

The first statement of the theorem is essentially taken from [2], where it was

proved that if a graph can be drawn in a civilized manner in Rd, then it can be

embedded in a h-fuzz of a d-lattice, where h depends only on s and r. A careful

examination of the proof reveals that it is not only sufficient but also a necessary

condition for embedding in lattice fuzzes.

5.4.2 Checking denseness and sparseness

To show a graph is dense (or sparse) in a particular dimension, one has to find

a drawing in that dimension with the appropriate properties. Dense and sparse

graphs occur readily with realistic “communication range” models, in which nodes

are deployed in an Euclidean space – perhaps randomly – and two nodes form an

edge between them if they are within range of each other [115]. A widely studied

class of such graphs that is also highly relevant for engineering applications is the

random geometric graph [109]. For such graphs, a natural drawing is obtained

by mapping the nodes to their physical locations in the Euclidean space they are

deployed in. We can show using the natural drawing, that, a graph generated

by placing a countable number of nodes in Rd, so that the maximum uncovered
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diameter γ of its natural drawing is finite, and every pair of nodes whose Euclidean

distance in the natural drawing is less than 2δ has an edge between them, is dense

in Rd. Such communication-range models also yield sparse graph quite easily, since

the condition of finite maximum connected range is satisfied by construction.

On the other hand, to show that a graph is not dense (or not sparse) in a

particular dimension is harder since one has to show that no drawing is possible

that has the required properties. Typically, this can be done by showing that the

existence of a dense (or sparse) drawing leads to a contradiction. An application

of this technique leads to the following result.

Lemma 5.4.1. 1. The d-dimensional lattice Zd is not sparse in Rd for every

d < d, and it is not dense in R
d for every d > d.

2. A regular1 infinite tree is not dense or sparse in any dimension. �

The first statement of the lemma is provided in Section 5.7. The proof of the

second statement is not provided since the method of the proof is similar.

We are now ready to prove Lemma 5.3.2.

Proof of Lemma 5.3.2. To prove the result by contradiction, suppose that a graph

G is dense in Rd as well as sparse in Rd̄, where d̄ < d. It follows from Theo-

rems 5.4.1 and 5.4.2 that there exist positive integers `, p such that Zd ⊂ G(`) and

G ⊂ Z
(p)

d̄
. It is straightforward to verify the following facts:

1. for every pair of graphs G, Ḡ that do not have any parallel edges, G ⊂ Ḡ ⇒

G(l) ⊂ Ḡ(l) for every positive integer l.

1A graph is called regular if the degree of every node in the graph is the same.

177



2. for an arbitrary graph G without parallel edges, and two positive integers

`, p, we have (G(p))(`) = G(p`).

It follows that Zd ⊂ Z
(`p)

d̄
, which means, from sparse embedding Theorem 5.4.2,

that a d-dimensional lattice is sparse in Rd̄. This is a contradiction because of

Lemma 5.4.1, which completes the proof.

5.5 Establishing the error scaling laws

Here we briefly outline the approach by which the error scaling laws stated in

Theorem 5.3.1 are obtained, and how the definitions of dense and sparse graphs

allow one to obtain those results. The key idea is to embed the measurement

graph in a “nice” looking graph such that the effective resistances in the nice

graph can be computed. Application of Rayleigh’s monotonicity law then tells us

that the effective resistance in the nice graph is a lower bound on the effective

resistance in the measurement graph, and from the electrical analogy we get a

lower bound on the BLUE covariance. Similarly, when we can embed a nice graph

in the measurement graph, we get an upper bound on the BLUE covariances.

The nice graphs that we use for the embedding are lattices and their fuzzes.

The effective resistance in lattices and their fuzzes can be analytically computed

because of the symmetry in their structure. It will be shown shortly that the

effective resistance in 1D, 2D and 3D lattices is a linear, logarithmic, and bounded

function of distance. Since dense graphs can embed lattice-like graphs, namely

fuzzes of lattices, we can show that the effective resistance in graphs that are

dense in 1D, 2D, and 3D grow as a linear, logarithmic, and bounded function of

distance as well. A similar story unfolds for sparse graphs.
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5.5.1 Effective resistance for lattices and fuzzes

An h-fuzz will clearly have lower effective resistance than the original graph

because of Rayleigh’s Monotonicity Law, but it is lower only by a constant factor.

The following result states this feature of fuzzes, which is a straightforward exten-

sion to the generalized case of a result about scalar effective resistance established

by Doyle [116]. Since the proof in [116] uses terminology of random walks, we still

include a proof in Section 5.5.3.

Lemma 5.5.1. Let (G, Ro) be a generalized electrical network with graph G =

(V ,E) satisfying Assumption 4.2.1, with a constant generalized resistance Ro ∈

S
k+ on its every edge. Let (G(h), Ro) be the electrical network similarly constructed

on G(h), the h-fuzz of G. For every pair of nodes u and v in V ,

αReff
u,v(G) ≤ Reff

u,v(G(h)) ≤ Reff
u,v(G),

where Reff
u,v(·) is the effective resistance in the network (·, Ro) and α ∈ (0, 1] is a

positive constant that does not depend on u and v. �

The following lemma establishes effective resistances in d-dimensional lattices

and their fuzzes. Note that infinite generalized networks constructed by assigning

constant matrix-resistances on every edge of a lattice or a h-fuzz of it satisfies

Assumption 4.2.1, and therefore results in Chapter 4 guarantees that the effective

resistances in infinite lattice networks are well defined.

Lemma 5.5.2. Consider the electrical network (Zh
d , Ro) with a constant general-

ized resistance Ro ∈ Sk+ at every edge of the h-fuzz of the d-dimensional square

lattice Zd, where Let h is an integer. The generalized effective resistance Reff
u,v

between two nodes u and v in the electrical network (Zh
d , Ro) satisfies
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1. Reff
u,v(Z

(h)
1 ) = Θ

(
dZ1(u, v)

)

2. Reff
u,v(Z

(h)
2 ) = Θ

(
log dZ2(u, v)

)
,

3. Reff
u,v(Z

(h)
3 ) = Θ

(
1
)
. �

Proof of Lemma 5.5.2. Consider the scalar electrical network (Zd, 1) formed by

assigning a 1-Ohm resistance to every edge of the d-dimensional lattice Zd. The

effective resistance between two nodes in the one-dimensional lattice network

(Z1, 1) is given by reff
u,v = dZ1(u, v), which follows from series resistance for-

mula. In the 2-dimensional lattice network (Z2, 1), the effective resistances obeys

reff
u,v = Θ (log dZ2(u, v)) [105]. Similarly, it was shown in [105] that for the scalar

electrical network (Z3, 1), the effective resistances obeys reff
u,v = Θ(1). The results

now follow upon applying Lemma 4.6.1, which allows one to go from scalar ef-

fective resistances to matrix-valued case, and Lemma 5.5.1, which shows that the

effective resistance in a graph and in its h-fuzz has the same order.

5.5.2 An intuitive explanation

Before proving the scaling laws for dense and sparse graphs, we offer an an

intuitive explanation, which comes from thinking of them as “coarse approxima-

tions” of the respective Euclidean spaces. In fact, thinking of the graph as a

metric space, with the graphical distance being the associated metric, such ap-

proximations can be made rigorous if mappings between the node set and points

on the Euclidean space are defined that preserve distances upto some constant

factor (see [117] for a thorough exposition of this topic). A dense drawing of a

graph in Rd is essentially such a map, which ensures that the distortion (measured

by the metric in the respective spaces, Euclidean or graphical) is upper-bounded

180



Figure 5.4. Doyle and Snell [2]’s illustration on approximating lattices by Eu-

clidean spaces.

in going from the Euclidean metric space to the graphical metric space. This

follows from Lemma 5.3.1.

In fact, the scaling laws can be explained by such coarse approximations, by

examining the effective resistance in resistive medium filling the entire Euclidean

space. The following quote from Doyle and Snell [2] explains it all:

Suppose we replace our d-dimensional resistor lattice by a (homoge-
neous, isotropic) resistive medium filling all of Rd and ask for the
effective resistance to infinity. Naturally we expect that the rotational
symmetry will make this continuous problem easier to solve than the
original discrete problem. If we took this problem to a physicist, he
or she would probably produce something like the scribblings illustrated
in Figure 5.42, and conclude that the effective resistance is infinite for
d = 1; 2 and finite for d > 2.

Although Doyle and Snell [2] were concerned chiefly about resistances grow-

ing to infinity or staying bounded, we can conclude much more from continuum

approximations, once we recognize that the matrix-valued effective resistance be-

haves quite similarly to the scalar valued one. By elementary calculations, one

2The figure number has been changed here for obvious reasons.
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can conclude that the scalar effective resistance in a metallic rod grows as the

length of the rod. This is shown in Figure 5.4. In an annular plate with inner

radius ro and outer radius r, the effective resistance between the inner and outer

boundaries of the plate is an logarithmic function of the radius r, when r is large.

In a sphere, however, similar calculations show that the effective resistance stays

bounded by a constant even the size of the sphere is increased without bound.

It is not difficult to convince ourselves that the d-dimensional lattice is a good

approximation of the d-dimensional Euclidean space; hence it is no surprise that

the effective resistances grow in the lattice Zd at the same rate as they do in Rd.

The results on effective resistances in lattices have been established rigorously

in [105, 118].

In going from lattices to more general measurement graphs, we used denseness

and sparseness properties to compare them to lattices by using embedding. How-

ever, a better understanding is obtained by comparing dense and sparse graphs

to the Euclidean spaces. A graph that is dense in Rd is essentially an “upper-

approximation” of the Euclidean space Rd, in the sense that when the graph is

looked at through blurring lenses, it looks at least as dense as Rd. Since the

graphs has “more conductive material” than R
d, the current faces less resistance

and hence the effective resistance in the graph grows slowly compared to the ef-

fective resistance in the Euclidean space. Figure 5.2 also attempts to argue this

pictorially. Similarly, a graph that is sparse in Rd is a “lower-approximation” of

Rd – it is at least as sparse as Rd. Since the graph has “less conductive material”

that Rd, the effective resistance in the graphs grows at least as fast as in Rd.

Such approximation is not uncommon in other fields of study. The field of coarse

geometry, for example, assumes such a point of view and avers “...two spaces that

look the same from a great distance are actually equivalent” [119].
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Continuous media and its Reff Lattice Dense and sparse graphs

PSfrag replacements

`

∫ `

`o
dr ∼ `

PSfrag replacements

`0
` ∫ `

`o

dr
2πr
∼ log `

PSfrag replacements

`

∫ `

`o

dr
2πr2 ∼ 1

Table 5.2. An intuitive explanation of error scaling laws by continuum approxi-

mation. The notation f(x) ∼ x means the ratio f(x)/x goes to a constant as x

goes to infinity.

5.5.3 Proof of the Error Scaling Laws Theorem 5.3.1

We now prove Theorem 5.3.1 by using all the tools that have been developed

in this chapter and in the previous one. The following terminology will be needed

in the proofs. For a matrix-valued function g : R → Rk×k and a scalar-valued

function p : R→ R, the notation g(y) = Θ(p(y)) means that g(y) = Ω(p(y)) and

g(y) = O(p(y)). The asymptotic notations O and Ω are described in Section 5.3.

Proof of Theorem 5.3.1. [Upper bounds:] Throughout the proof of the upper

bounds, we will use Reff
u,v(G), for any graph G, to denote the effective resistance

between nodes u and v in the electrical network (G, Pmax) with every edge of G

having a generalized resistance of Pmax. Consider the generalized electrical net-

work (G, Pmax) formed by assigning a constant generalized resistances of Pmax to
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every edge of the measurement graph G. From the Electrical Analogy theorem

and Monotonicity Law (theorems 4.5.1 and 4.6.1), we get

Σu,o ≤ Reff
u,o(G).

Since G is dense in Rd, there exist a dense drawing of G in Rd, which we denote

by a drawing function f , and a positive integer h such that the d-D lattice Zd

can be embedded in the h-fuzz of G. Moreover, Theorem 5.4.1 tells us that there

exists uz, oz ∈ VZd
, a positive constant c, and an embedding η : VZd

→ V of Zd

into G(h), such that

dG(u, η(uz)) ≤ c, dG(o, η(oz)) ≤ c (5.3)

dZd
(uz, oz) < 4d+

√
d

γ
df(u, o), (5.4)

where γ is the maximum uncovered diameter of the f -drawing of G. Note that

η(uz), η(oz) ∈ V . Consider the electrical network (G(h), Pmax) formed by assigning

every edge of G(h) a resistance of Pmax. From the Triangle Inequality for effective

resistances (Lemma 4.6.2),

Reff
u,o(G(h)) ≤ Reff

u,η(uz)(G(h)) +Reff
η(uz),η(oz)(G(h))

+Reff
η(oz),o(G(h)). (5.5)

For any two nodes u, v ∈ V , triangle inequality gives us Reff
u,v(G(h)) ≤ dG(h)(u, v)Pmax ≤

2
h
dG(u, v)Pmax. Using this bound in (5.5), and by using (5.3), we get

Reff
u,o(G(h)) ≤ 4c

h
Pmax +Reff

η(uz),η(oz)(G(h)). (5.6)

Since G(h) ⊃ Zd, from Rayleigh’s Monotonicity Law (Theorem 4.6.1), we get

Reff
η(uz),η(oz)(G(h)) ≤ Reff

uz,oz
(Zd).
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When G is dense in, say, 2D, we have from Lemma 5.5.2 that

Reff
uz,oz

(Z2) = Θ (log dZ2(uz, oz)) ,

which implies

Reff
η(uz),η(oz)(G(h)) = O (log dZ2(uz, oz)) .

Combining this with (5.4) and (5.6), we get

Reff
u,o(G(h)) = O (log df(u, o)) .

Since G is a bounded degree graph, from Lemma 5.5.1 we know that the effective

resistance in G and its h-fuzz is of the same order:

Reff
u,o(G) = Θ

(
Reff

u,o(G(h))
)
,

which gives us the desired result that, when G is dense in 2D,

Σu,o ≤ Reff
u,o(G) = O (log df(u, o)) .

The statements of the upper bounds for 1 and 3-dimensions can be proved simi-

larly. This concludes the proof of the upper bounds in Theorem 5.3.1.

[Lower bounds:] Throughout the proof of the lower bounds, for any graph G, we

will use Reff
u,v(G) to denote the effective resistance between nodes u and v in the

electrical network (G, Pmin) with every edge of G having a generalized resistance

of Pmin. Now consider the generalized electrical network (G, Pmin) where G is the

measurement graph G. From the Electrical Analogy and Rayleigh’s Monotonicity

Law (theorems 4.5.1 and 4.6.1), we get

Σu,o ≥ Reff
u,o(G). (5.7)

Since G is sparse in Rd, it follows from Theorem 5.4.2 that there exists a positive

integer h, such that G ⊂ Z
(h)
d . Let η : V → VZd

be the embedding of G into
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Z
(h)
d . Consider the generalized electrical network (Z

(h)
d , Pmin) formed by assigning a

generalized resistance of Pmin to every edge of Z
(h)
d . From Rayleigh’s monotonicity

law, we get

Reff
u,o(G) ≥ Reff

uz,oz
(Z

(h)
d ), (5.8)

where uz = η(u), oz = η(o) refer to the nodes in Z
(h)
d that correspond to the

nodes u, o in G. When the graph is sparse in, say, 2D, it follows from (5.8) and

Lemma 5.5.2 that

Reff
u,o(G) = Ω (log dZ2(uz, oz))

= Ω (log df(u, o)) ,

where the second statement follows from (5.2) in Theorem 5.4.2. Combining the

above with (5.7), we get Σu,o = Ω(log df(u, o)), which proves the lower bound in

the 2D case. The statements for the lower bounds in the 1D and 3D can be proved

in an analogous manner. This concludes the proof of the theorem.

5.6 Comments and open problems

We established a classification of graphs, namely, dense or sparse in Rd, 1 ≤

d ≤ 3, that determines how the optimal estimator error of a node grows with its

distance from the reference node. The classification of dense and sparse graphs

is interesting only for infinite graphs, since no finite graph can be dense in any

dimension and a finite graph is sparse in every dimension.

Although infinite graphs are a compelling approximation to large finite graphs,

this approximation puts a constraint that the scaling laws apply only to nodes

in the interior of the finite graphs. For a node that is not close to the boundary
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of the graph, the graph appears as if it extends to infinity in all directions. In

that case we can regard the node as belonging to an infinite graph. In fact, the

results in the Chapter 4 show that in such a situation, the BLUE covariance of

the node in the finite measurement graph can be quite close to the covariance

in the infinite graph. Still, it leaves the question of covariances of nodes in the

boundary open. In a finite graph, it may be of interest to obtain bounds on

the maximum BLUE covariance. This is equivalent to obtaining bounds on the

maximum effective resistance in the graph, where the maximum is taken over all

pairs of nodes. It may be possible to obtain such bounds for very special classes

of finite graphs such as rectangular grids by using known results on the effective

resistance in such graphs [120]. However, how to do it for a wider class of finite

graphs is an open question.

Another avenue of future research is to examine the role of randomness in

the graph’s structure explicitly. Although the dense and sparse classification we

obtained does allow randomness in the structure of the graph, the effect of such

randomness on the scaling laws for the error is not explicitly accounted for in

the present work. A useful research direction would be the investigation of the

estimation error covariances in graphs with random structure, such as random

geometric graphs [109]. The BLUE covariance itself is a random variable in these

situations. Another interesting avenue is the exploration of BLUE covariances in

scale-free graphs, which have been a popular – if somewhat controversial – model

for many large scale networks, both man-made and natural [108].

Scale-free networks have the additional difficulty that there is no well-accepted

definition of a scale free graph (see [121] for a extensive discussion on this issue).

A preliminary investigation of a related class of graphs called Gromov hyperbolic

graphs, which have the advantage of at least being well-defined, have been un-
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dertaken in [122]. Effective resistance in small world graphs have been studied

in [123] using methods of statistical physics.

5.7 Proofs

Proof of Lemma 5.3.1. We prove that 1 implies 2 by contradiction. Assuming

that 2 does not hold, we have that

∀α ∀β ∃ū, v̄ ∈ V such that dG(ū, v̄) > αdf(ū, v̄) + β.

or equivalently

∀α ∀β ∃ū, v̄ ∈ V

such that

df(ū, v̄)

dG(ū, v̄)
<

1

α
− β

αdG(ū, v̄)
.

This means that for a given α, β, the set

{df(u, v)

dG(u, v)
: u, v ∈ V and dG(u, v) ≥ β

}

contains at least the element

df(ū, v̄)

dG(ū, v̄)
<

1

α
− β

αdG(ū, v̄)
<

1

α

and therefore

inf
{df(u, v)

dG(u, v)
: u, v ∈ V and dG(u, v) ≥ β

}

<
1

α
.

Making β →∞ we obtain that

ρ = lim
β→∞

inf
{df(u, v)

dG(u, v)
: u, v ∈ V and dG(u, v) ≥ β

}

<
1

α
.
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But since α can be arbitrarily large, the above actually implies that ρ = 0, which

contradicts 1.

To prove that 2 implies 1, we note that when 2 holds, we conclude that for every

pair of nodes u, v ∈ V , for which dG(u, v) ≥ n, we have that

df(u, v)

dG(u, v)
≥ 1

α
− β

dG(u, v)
≥ 1

α
− β

n
, ∀u 6= v ∈ V .

Therefore,

inf
{df(u, v)

dG(u, v)
: u, v ∈ V and dG(u, v) ≥ n

}

≥ 1

α
− β

n
.

As n→∞, the left-hand side converges to ρ and the right-hand side converges to

1
α
> 0, from which 1 follows.

The statements about the maximum connected range and the existence of con-

stants α > 0, β ≥ 0 can be proved in a manner similar to that above.

Proof of Theorem 5.4.1. We will denote by g : VZ d → Rd the natural drawing of

the lattice Zd.

(⇒) We have to prove that if G is dense in Rd, conditions (i) and (ii) are satisfied.

Since G is dense in Rd, there is a drawing function f : V → Rd so that the

f -drawing of G has a γ <∞ and ρ > 0. Define a new drawing f ′ : V → R
d as

f ′(u) =
1

γ
f(u), ∀u ∈ V ,

so that the maximum uncovered diameter γ ′ of the f ′ drawing of G is 1. Note

that f ′ is still a dense drawing of G. Now we superimpose the natural g-drawing

of Zd on the f ′-drawing of G, and draw open balls of diameter one B(g(uz),
1
2
)

centered at the natural drawing g(uz) of every lattice node. Figure 5.5 shows

an example in R2. Since γ′ = 1, it follows from the definition of denseness that
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Figure 5.5. Superimposing a 2-dimensional lattice (brown) on a 2-dimensional

dense graph (black).

in every one of those balls, there is at least one node u ∈ V . To construct the

embedding, we associate each node of the lattice to a node of G whose drawing

appears inside the ball centered around the lattice node. This defines a injective

function η : VZd
→ V . Consider two nodes of the lattice uz, vz ∈ VZd

that have

an edge between them. Let ū := η(uz), v̄ := η(vz). Since f ′(ū) and f ′(v̄) belong

to adjacent balls of unit diameter (see Figure 5.5),

df ′(ū, v̄) = ‖f ′(ū)− f ′(v̄)‖ ≤ 2.

From Lemma 5.3.1 and f ′ being a dense drawing in Rd, it follows that dG(ū, v̄) ≤

2α + β, for some positive constants α and β. Define h := d2α + βe. Then ū and

v̄ will have an edge between them in the h-fuzz G(h). So G(h) ⊃ Zd, and we have

the desired result that denseness implies (i).

For every u ∈ V , find uz ∈ VZd
as the node in the lattice such that the ball of

unit diameter drawn around it is closest to u. That is, find uz ∈ VZd
such that

uz = arg min
u′

z∈VZd

dist
(

f ′(u), B(g(u
′

z), 1/2)
)

(5.9)
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where dist(x,A) between a point x ∈ R
d and a set A ⊂ R

d is defined as

dist(x,A) = inf
y∈A
‖x− y‖.

There are only 2d balls one needs to check to determine the minimum in (5.9), so

uz exists, though it may not be unique. If there are multiple minima, pick any

one. This procedure defines an onto map ξ : V → VZd
. Let η : VZd

→ V be the

embedding of Zd into G(h) as described earlier in this proof. Define ψ : V → V as

ψ := (η ◦ ξ). We will now show that, for every u ∈ V , the node ψ(u) ∈ V , which

has a corresponding node in the lattice, is within a uniformly bounded graphical

distance of u. Since f ′(u) either lies in the ball centered at g(uz) or in the gaps

between that ball and the neighboring balls, ‖f ′(u)− g(uz)‖ <
√
d. Therefore,

df ′(u, ψ(u)) ≤ ‖f ′(u)− g(uz)‖+ ‖g(uz)− f ′(ψ(u))‖

<
√
d+

1

2
≤ 3

2

√
d, (5.10)

where we have used the fact that f ′(ψ(u)) ∈ B(g(uz),
1
2
). From Lemma 5.3.1 and

the denseness of the f -drawing of G, we get

dG(u, ψ(u)) ≤ αdf(u, ψ(u)) + β

= αγdf ′(u, ψ(u)) + β

<
3

2
αγ
√
d+ β.

Define

c := d3
2
αγ
√
d+ βe, (5.11)

which is a constant independent of u and v. Then for every u ∈ V , there exists

a ū := ψ(u) ∈ η(VZd
) ⊂ V such that dG(u, ū) < c, which is the desired condition

(ii).
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(⇐) We have to prove that if (i) and (ii) are satisfied, then G is dense in R
d. We

will construct a drawing f of G in Rd with the following procedure and then prove

that it is a dense drawing. Since Z ⊂ G(h), there is an injective map η : VZd
→ V

such that η(VZd
) ⊂ V . Pick a node u in V that has not been drawn yet. By (ii),

there exists a positive constant c and a node uz ∈ VZd
such that ū := η(uz) ∈ V

and dG(u, ū) < c. If ū has not been drawn yet, then draw it the location of its

corresponding lattice node, i.e.,

f(ū) = g(uz). (5.12)

A little thought will reveal that if ū has been drawn already, as long as the drawing

procedure outlined so far is followed, it must have been drawn on the lattice

location g(uz), so (5.12) holds. Once ū is drawn, we draw u in the following way.

In case ū = u, drawing of u is determined by the drawing of ū. If u 6= ū, draw u

by choosing a random location inside an open ball of diameter 1 with the center

at f(ū). To show that a drawing obtained this way is dense, first note that the

largest uncovered diameter γ < 2 since a subset of the nodes of V occupy the

lattice node positions. Pick any two nodes u, v ∈ V . Again, from (ii), we know

that there exists ū, v̄ ∈ η(VZd
) ⊂ V such that dG(u, ū) ≤ c and dG(v, v̄) ≤ c for

some positive constant c. Therefore

dG(u, v) ≤ dG(u, ū) + dG(ū, v̄) + dG(v̄, v)

≤ 2c+ h dG(h)(ū, v̄)

Since Zd ⊂ G(h),

dG(h)(ū, v̄) ≤ dZd
(η−1(ū), η−1(v̄))

= ‖g(uz)− g(vz)‖1
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where ‖ · ‖1 denotes the vector 1-norm,

≤
√
d‖g(uz)− g(vz)‖

=
√
d‖f(ū)− f(v̄))‖ (from (5.12))

=
√
d df(ū, v̄).

Because of the way the drawing f is constructed, we have df(u, ū) ≤ 1, which

implies df(ū, ū) ≤ df(ū, u) + df (u, v) + df(v, v̄) = df(u, v) + 2. So we have

dG(u, v) ≤ 2c+ h
√
d (df(u, v) + 2)

= 2(c+ h
√
d) + h

√
d df (u, v).

From Lemma 5.3.1, we see that the asymptotic distance ratio ρ > 0 for the f -

drawing of G, which establishes that f is a dense drawing of G in Rd. It follows

that G is dense in Rd.

To prove the relationship (5.1) for any dense drawing f , consider again the scaled

drawing f ′ defined as f ′ = f/γ, so that the maximum uncovered diameter of f ′

is 1. Since G is dense in Rd, Zd can be embedded in G(h) with an embedding

η : VZd
→ V . We choose the embedding η as described in the first part of the

proof. For every u ∈ V , call uz := ξ(u), where ξ : V → VZd
was defined earlier

in this proof for the f ′ dense drawing of G. Now consider two arbitrary nodes

u, v ∈ V and let uz := ξ(u), vz := ξ(v) (see Figure 5.6). It was shown earlier in

this proof that for every pair of nodes u, v ∈ V , we have dG(u, η(uz)) < c and

dG(v, η(vz)) < c, where c is defined in (5.11).

Now,

dZd
(uz, vz) = ‖g(uz)− g(vz)‖1

≤
√
d‖g(uz)− g(vz)‖,
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Figure 5.6. Natural drawing of the 2-D lattice (brown) superimposed on the f ′

drawing of G. Edges are not shown to prevent clutter. In this example, u = ū but

v 6= v̄.

and

‖g(uz)− g(vz)‖ ≤ ‖g(uz)− f ′(ū)‖+ ‖f ′(ū)− f ′(u)‖+

‖f ′(u)− f ′(v)‖+ ‖f ′(v)− f ′(v̄)‖+

‖f ′(v̄)− g(vz)‖.

We know that ‖g(uz)− f ′(ū)‖ ≤ 1
2
≤

√
d

2
since f ′(ū) ∈ B(g(uz),

1
2
), and ‖f ′(u)−

f ′(ū)‖ < 3
2

√
d from (5.10). Using these in the above, we get

‖g(uz)− g(vz)‖ ≤ 4
√
d+ df ′(u, v),

⇒dZd
(uz, vz) ≤ 4d+

√
d

γ
df(u, v)

which is the desired result.

Proof of Theorem 5.4.2. We will denote by g : VZd
→ R

d the natural drawing of

the lattice Zd.
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⇒ Since G is sparse in R
d, there is a drawing function f : V → R

d that produces a

civilized drawing of G with minimum node distance s > 0 and maximum connected

range r <∞. Consider a new drawing f ′ : V → Rd of G defined as

f ′(u) =

√
d

s
f(u), ∀u ∈ V . (5.13)

The minimum node distance and the maximum connected range in this drawing

are

s′ =
√
d, r′ =

√
d

s
r.

Superimpose the two drawings g(Zd) and f ′(G) (cf. figure 5.7). In every lattice

cell3 in R
d, there is at most one node of G, for if there are two, then in an open

ball of diameter
√
d in Rd, there are two points f ′(u) and f ′(v) where u, v ∈ V ,

which violates the condition that

s′ = inf
u6=v

u,v∈V
‖f ′(u)− f ′(v)‖ =

√
d.

Define a mapping η : V → VZd
by associating every node u ∈ V to the lattice

vertex with the most negative coordinate in the lattice cell where f ′(u) lies (cf.

Figure 5.7). Since a lattice cell contains the f ′ drawing at most one node, η is

injective. Let uz := η(u) and vz := η(v) . Since f ′(u) and g(uz) lie in the same

lattice cell,

‖f ′(u)− g(uz)‖ ≤
√
d, ∀u ∈ V . (5.14)

3A lattice cell is taken as a unit semi open hypercube in Rd, which is a subset of Rd of the
form [a1, a1 + 1)× [a2, a2 + 1) · · · × [ad, ad + 1) for some a1, a2, . . . , ad ∈ R.
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Figure 5.7. A graph that can be drawn in a civilized manner in R2 can be em-

bedded in a fuzz of the 2-D lattice.

So,

dZd
(uz, vz) = ‖g(uz)− g(vz)‖1

≤
√
d‖g(uz)− g(vz)‖

≤
√
d
(

‖g(uz)− f ′(u)‖+ ‖f ′(u)− f ′(v)‖

+ ‖f ′(v)− g(vz)‖
)

≤
√
d
(

2
√
d+ df ′(u, v)

)

If (u, v) ∈ E , df ′(u, v) ≤ r′ =
√

d
s
r, where r′ is the maximum connected range in

the f ′ drawing of G, so we get

dZd
(uz, vz) ≤ 2d+

d

s
r <∞

Defining h := d2d + d
s
re, we see that there is an edge between uz and vz, i.e.,

between η(u) and η(v), in Z
(h)
d . This proves that η is an embedding, so G ⊂ Z

(h)
d .

⇐ Since G ⊂ Z
(h)
d for some h < ∞, there is an embedding η : V → VZd

of G in

Zd. Consider a drawing f of G defined as

f(u) = g(η(u)), ∀u ∈ V .
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We immediately get s ≥ 1 > 0 for this drawing. If (u, v) ∈ E ,

‖f(u)− f(v)‖ = ‖g(η(u))− g(η(v))‖

≤ ‖g(η(u))− g(η(v))‖1

= dZd
(η(u), η(v)) ≤ h,

where the last inequality follows because G ⊂ Z
(h)
d . Therefore the maximum

connected range r in the drawing f of G satisfies r ≤ h < ∞. The drawing of G

specified by f is therefore a civilized drawing in Rd, from which it follows that G

is sparse in Rd.

To prove the relation (5.2), we go back to the drawing f ′ defined in (5.13) based

on the civilized drawing f of G. Since G is sparse in Rd, G ⊂ Z
(h)
d for some positive

integer h. Let η : V → VZd
be the embedding of G into Z

(h)
d . Denoting uz := η(u),

for any u, v ∈ V we get

dZd
(uz, vz) = ‖g(uz)− g(vz)‖1

≥ ‖g(uz)− g(vz)‖.

Since ‖f ′(u) − f ′(v)‖ ≤ ‖f ′(u) − g(uz)‖ + ‖g(uz) − g(vz)‖ + ‖g(vz) − f ′(v)‖, we

get from the above that

dZd
(uz, vz) ≥ ‖f ′(u)− f ′(v)‖ − ‖f ′(u)− g(uz)‖ − ‖g(vz)− f ′(v)‖

≥ df ′(u, v)− 2
√
d.

where we have used that fact that both f ′(u) and g(uz) lie in the same lattice cell

for every u ∈ V . Since df ′(·) = df(·)
√

d
s

, the result follows.

Proof of Lemma 5.4.1. We only provide the proof that the 2-dimensional lattice is

not sparse in R and is not dense in R3. The general case for arbitrary dimensions

is analogous.
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To prove by contradiction the lack of denseness, assume that there exists a dense

drawing f of Z2 in R3, with associated γ < ∞ and ρ > 0. Fix the origin of R3

at f(u) for an arbitrary node u in the lattice Z2. For an arbitrary D > 0, the

volume of the sphere in R3 centered at the origin with diameter D, denoted by

B3(0, D) is Ω(D3). Therefore the number of nodes of Z2 drawn inside B3(0, D)

is Ω((D
δ
)3) = Ω(D3). It is straightforward to show that for any set of n distinct

nodes in the lattice Z2, the maximum graphical distance between any two nodes in

the set is Ω(
√
n). Therefore the maximum graphical distance between the nodes

in B3(0, D) is Ω(D
3
2 ).

The maximum Euclidean distance between any two nodes drawn inside the sphere

B3(0, D) under the f -drawing is at most D, and since f is a dense drawing,

it follows from Lemma 5.3.1 that for every pair of nodes u, v in Z2 such that

f(u), f(v) ∈ B3(0, D), we have dG(u, v) ≤ aD + b. Therefore, the maximum

graphical distance between pairs of nodes whose drawing falls inside B3(0, D) is

O(D), as well as Ω(D
3
2 ), which is a contradiction for sufficiently large D. Hence

no dense drawing of Z2 in R3 is possible.

To show Z2 is not sparse in R, assume that there exists a civilized drawing of Z2 in

R with s > 0 and r <∞, where r and s are constants. Consider a subgraph Z2(n)

of Z2 that consists of all nodes within a Euclidean distance n from the origin. The

total number of nodes in this finite subgraph is Ω(n2). The length of the interval,

L, in which the nodes of this subgraph are located in the sparse 1-d drawing of

Z2 is clearly L = Ω(sn2). Since the maximum graphical distance between any

two nodes in the subgraph Z2(n) is n by construction, the maximum connected

range in the 1-d drawing must be at least r ≥ L
n

= Ω(sn). Since this must be true

for every n, r cannot be a finite constant. Thus, no civilized drawing of Z2 in R

exists.
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Proof of Lemma 5.5.1. Due to Lemma 4.6.1, we need to prove the result only for

the case of scalar-valued unit resistors. Let G = (V ,E) be a connected graph

with an unit resistor on every edge. Let G(h) = (V ,E (h)) be the h-fuzz of G. We

assign an unit resistance to every edge of E (h). The edge set E(h) consists of two

disjoint subsets E and Eh, where Eh is the set of “new” edges in G(h) that were

not there in G. That is, E (h) = E ∪ Eh and E ∩ Eh = ∅. To every edge e ∈ Eh,

there corresponds a path Pe of length `e ≤ h in G. See figure 5.8(A) and (B)

for example. Replace every edge e ∈ Eh by a series of `e edges, each with unit

resistance, and call the resulting graph G(h). We introduce new nodes in doing so.

To every one of these new nodes in G(h), there corresponds a node in G (see figure

5.8(C)). by Rayleigh’s monotonicity law, the effective resistance has increased:

Reff
ū,v̄(G(h)) ≥ Reff

u,v(G(h)), where ū is a node in G(h) that corresponds to u in G(h).

However, since we have increased the resistance of any edge by no more than a

factor of h, the increase in effective resistance is no more than a factor of h:

Reff
ū,v̄(G(h)) ≤ h Reff

u,v(G(h)). (5.15)

Now for every edge e of Eh, look at the corresponding series of resistors in E (h).

Its endpoints lie in the original graph G. Take its intermediate vertices and short

them to vertices of G(h) along the path Pe. We do this for every edge e ∈ Eh and

call the resulting graph G ′. Again due to Rayleigh’s monotonicity law,

Reff
u′,v′(G ′) ≤ Reff

ū,v̄(G(h)), (5.16)

where u′ denotes the node in G ′ that corresponds to ū in G(h). The graph G ′

differs from G only in having extra parallel edges between its nodes (figure 5.8(D)).

However, the number of edges in G ′ that are parallel to an edge e in G are no more

than the number of paths in G of length at most h that traverse the edge e. Since

G is a bounded degree graph, there is an upper bound to this number. Let η be
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Figure 5.8. Fuzzing doesn’t change the effective resistance too much.

this upper bound. It is easy to see from Parallel Resistors Proposition 4.6.1 that

if every edge of a graph – that has unit resistance on every edge – is replaced

by η parallel edges and every one of the new edges have unit resistance, then the

effective resistance in the new graphs lower than that in the original graph by a

factor of η. Combining with Rayleigh’s monotonicity law, we get

1

η
Reff

u,v(G) ≤ Reff
u′,v′(G ′). (5.17)

Equations (5.15),(5.16) and (5.17) give us

Reff
u,v(G(h)) >

1

hη
Reff

u,v(G), (5.18)

which proves the result.
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Part II

Control with Relative
Measurements
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Chapter 6

Decentralized formation control:

effective resistance vs. scalability

6.1 Introduction

In this chapter we consider the problem of formation control by a group of au-

tonomous agents. A formation is specified in terms of a desired relative positions

between agents. Each agent can measure its relative position with only a limited

number of nearby agents. The task for each agent is to take control actions, e.g.,

modify its acceleration and/or velocity, using only the locally available informa-

tion, such that the group attains its collective goal of maintaining the desired

formation.

Motivation for studying formation control problems arise from its relevance to

diverse applications, from military surveillance to swarming in nature. Keeping

a formation among a group of vehicles is important in certain military applica-

tions where sensor assets are limited. In that case, individual team members
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can concentrate their sensors across a limited portion of the environment, while

the team as a whole is still able to sense the whole environment [23]. A group

of aerial vehicles can reduce drag by maintaining their relative positions at spe-

cific values [18, 19]. Similarly, capacity of highways can be improved by if large

groups of vehicles, called platoons, can move in formation maintaining a small

inter-vehicular separation (see [6] and references therein). Yet another applica-

tion of formation control is interferometric imaging by a formation of satellites

that can lead to a higher degree of accuracy than what is possible by a single

satellite [24, 124].

Study of formation control is useful in understanding biological systems as

well. Several species of birds and many species of fish and aquatic animals are

known to exhibit “swarming”, which loosely means some form of aggregate motion

by a group as a whole. A few example of such swarming are: pattern forming by

schools of fish [125], synchronized predation of cope-pods by juvenile herring [126],

moving in formation by spiny lobsters to reduce drag [20] and V-formation flying

by birds (apparently to improve lift [22] or for better visual cues [127]).

The control action taken by an agent necessarily depends on the states of the

other agents in order to maintain the formation. Thus, the dynamics of individual

agents become coupled, or interconnected, which can be described by a graph. The

nodes of the graph are the agents and the edges are the node pairs whose states

appear in each other’s control algorithms. We call this graph the interconnection

graph.

The interconnection graph depends on the choice of control architecture. In a

centralized control architecture, all the relative position measurements are made

available to a either a leader node or to every node. If the control signals for

all the nodes are computed by a leader, it transmits those signals back to the
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individual nodes. Otherwise, every node computes its own control signal from the

global information it has available. In the former case, the interconnection graph

will look like a “star”, with an edge (u, o) between every node u and the leader.

In the latter, the interconnection graph will be a complete graph, in which every

node is connected to every other node.

In contrast, in a decentralized architecture, every node uses only the informa-

tion that it can obtain with either communication with its nearby node or with

on-board sensors. For example, when every node uses the measurements of its rel-

ative position with respect to its nearby nodes, which it can obtain using on-board

sensors such as radars, the resulting architecture is decentralized. The intercon-

nection graph will have a highly local structure, with edges existing only between

nodes that are physically close. A centralized architecture suffers from a high

communication overhead compared to a decentralized one, which makes decen-

tralized architecture more appealing, particularly for large groups of autonomous

agents.

We will study decentralized architectures in this chapter, and focus on situa-

tions when the interconnection graph has a large number of nodes. Scalability is

an important issue, which refers to how sensitive the performance of the closed

loop is to the number of nodes. The performance metric is application dependent,

and may refer to the stability margin, sensitivity to measurement noise, etc. Typ-

ically, if the performance of the closed loop is independent of, or degrades slowly

with, the number of nodes, then the control algorithm is termed scalable. We will

see in this chapter that scalability of formation control is as much a function of

the structure of the interconnection graph as it is of the control algorithm.

Since our focus is on the interconnection structure, we consider simple models

of node dynamics and simple control laws. In particular, the dynamics of each
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node is modeled as an integrator, and each node modifies it velocity depending

on a local error it estimates by comparing the positions of its neighbors (relative

to itself) to the desired ones. Such node models and control laws have been

investigated extensively in the literature [29, 128].We will refer to this particular

control law as Laplacian disagreement control, the term being borrowed due to

the control law’s close connection to the Laplacian disagreement function used

in [129]. Apart from employing a simple control law, we also ignore some of the

issues faced in practice, such as sensing and communication faults, time variation

in the interconnection due to these and other reasons, avoiding obstacles, etc.

Chapter organization: Two topics are studied in this chapter, that of sensitiv-

ity to meaurement noise and the minimum eigenvalue of the Dirichlet Laplacian.

Each section introduces a topic, states the problem and then presents the results.

Section 6.3 investigates noise sensitivity of formation control with relative mea-

surements. Section 6.4 describes a lower bound on the smallest eigenvalue of the

Dirichlet Laplacian with effective resistances, along with a summary of applica-

tions where such bound is useful.

6.2 Contributions and prior work

The results established in this chapter are briefly summarized below:

1. Graph structure and error propagation: we show in Section 6.3 that the co-

variance of the steady-state formation error of a node is equal to the matrix-

valued effective resistance between the node and the reference in an abstract

electrical network constructed from the architecture graph. The formation

error of a node is the difference between its relative position w.r.t. a reference
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and the desired relative position. The matrix-valued effective resistance was

introduced in Chapter 4. It was shown in Chapter 5 that graph structure

has a huge impact on the effective resistance. This analogy with electrical

networks show that the performance of the Laplacian disagreement control

is quite sensitive to the structure of the interconnection graph.

2. Bound on the Dirchlet Laplacian spectrum: In Section 6.3 we derive a lower

bound on the minimum eigenvalue of the Dirichlet Laplacian of a matrix-

weighted graph in terms of the effective resistances. The Dirichlet Laplacian

was introduced in Chapter 2. The stability margin of the closed loop forma-

tion depends on this eigenvalue of the interconnection graph. In addition,

convergence rate of the Jacobi algorithm described in Chapter 3 also depends

on this eigenvalue of the measurement graph. To determine the performance

of these algorithms, we need a lower bound on this eigenvalue; whereas few

results are available in the literature on lower bounds on the Dirichlet Lapla-

cian spectrum. The bound derived here in terms of the effective resistances

is useful when bounds on the effective resistance can be derived. This is

possible for certain classes graphs without complete knowledge of the graph

itself, when graph embedding techniques can be used to relate them to

graphs with known effective resistance, as described in Chapters 4 and 5.

We see from the discussion above that the generalized effective resistance,

introduced in Chapter 4 in connection with estimation problems, has a potential

for fruitful use in control problems as well, especially in multi-agent coordination

problems that are posed in terms of matrix-weighted graphs.

Prior work: Although the Laplacian disagreement control has been examined

extensively in connection with consensus algorithms (see, e.g., [29, 30, 129]), the
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effect of interconnection structure on its performance has received scant attention.

Except in the special case of 1D formations of automated vehicular platoons, the

effect of disturbances on spacing errors have not been thoroughly investigated.

The platoon problem will be discussed extensively in the following two chapters.

Various forms of formation control using relative measurements have been

examined, including behavior based approaches [23], control using artificial po-

tentials, etc. Typical results in this area consists of a control algorithm and a

proof of asymptotic stability. When vehicle dynamics or the control laws are non-

linear [130–132], or when the interconnection graph is directed [133], establishing

asymptotic stability itself is challenging. So examination of stability margins,

especially for large groups of autonomous agents, yet to generate much enthusi-

asm. Although it has been recognized that the convergence rate of the errors will

depend on the interconnection graph, most studies focus on “leaderless coordina-

tion”, in which the Laplacian eigenvalues that become important [128, 133]. This

emphasis is partly due to the popularity of “consensus algorithms” and their close

connection with formation control [30], in which leaderless coordination is natural.

However, in contrast to consensus algorithms, in formation control, the presence

of a reference node in the interconnection graph is common and realistic, since an

average trajectory has to be specified to the whole formation in some form, which

is usually done through either a lead vehicle or a virtual leader, such as in [134].

In that case, the Dirichlet Laplacian eigenvalue is the critical quantity.

The spectrum of the Dirichlet Laplacian has attracted very little attention from

graph theorists. Except for a few results in [81], most work has focused on the

Laplacian spectra. The minimum eigenvalue of the Dirichlet Laplacian is smaller

than the second smallest eigenvalue of the graph Laplacian, the latter being also

called the algebraic connectivity . Therefore, bounds on the algebraic connectivity,
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on which extensive literature exists, are not useful in lower bounding the minimum

eigenvalue of the Dirichlet Laplacian eigenvalues. The effective resistance based

lower bound is therefore quite useful, especially for graphs for which the order

estimates of the effective resistances are known.

6.3 Formation control with noisy measurements

Consider a group of N mobile nodes moving in k-dimensional space. One

of the objectives of the group is to maintain a pre-specified formation defined

by the relative positions between nodes. In particular, denoting by xu ∈ R
k,

u ∈ V := {1, 2, . . . , N} the position of the uth node, the control objective is to

make the positions converge to values for which

xu − xv = ru,v, ∀(u, v) ∈ V ×V , (6.1)

where ru,v denotes the desired relative position of node u with respect to node v.

Not all nodes are able to measure their relative positions with respect to all

other nodes and therefore each node is constrained to use only a few relative

position measurements to compute its control signal. We denote by E ⊂ V ×V
the set of ordered pairs of nodes that can measure their relative positions. In

particular, the existence of a pair (u, v) in E signifies that node u can measure

its position with respect to v. Thus the group is formally described in terms

of a directed graph G = (V ,E), whose nodes represents the nodes and whose

edges represent the pairs of nodes that have access to a relative measurement. We

assume that a noisy relative measurement yu,v of the following form is available

to node u if (u, v) ∈ E :

yu,v(t) = xu(t)− xv(t) + εu,v(t) (6.2)
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where εu,v is a white random noise process with auto-covariance

E[εu,v(t1)ε
T
u,v(t2)] = δ(t1 − t2)Ru,v. (6.3)

One of the nodes o ∈ V will be called the reference and it will move independently

of the remaining ones. The remaining nodes attempt to maintain the formation

specified by (6.1). The reference node may or may not be be a physical agent. It

may be a virtual reference that is known to at least one of the physical agents. In

case xo is not a physical agent, an edge between the node u and the reference o

means that the agent u is able to measure its position with respect to the reference

o. Or, the reference node maybe a proxy for the moving frame of reference if all

the nodes are moving at a constant velocity.

We assume the following:

Assumption 6.3.1. 1. The graph G is time-invariant.

2. If (u, v) ∈ E , then (v, u) ∈ E .

3. The noise processes over different edges are independent of each other, i.e.,

eu,v(t) is independent of ev,u(t) for all t ∈ R+.

4. Even though the measurement errors on the two edges (u, v) and (v, u)

connecting the nodes u and v are uncorrelated, they have the same auto-

covariance matrix; i.e., Ru,v = Rv,u.

For formation control problems the first assumption is not restrictive since the

desired formation is usually time invariant. The second assumption says that if

a measurement yu,v is available to u, then the measurement yv,u is available to v,

although both measurements will be corrupted with noise. Since the noise cor-

rupting the measurement of xu−xv available to u will be (in general) different from

209



the noise on the measurement of xv − xu available to v, these two measurements

are distinct. The assumption that the noises affecting the measurements on the

edge (u, v) has the same auto-covariance as the noise on (v, u) is likely to be sat-

isfied when they use similar sensors. The assumption that whenever (u, v) exists,

(v, u) also exists may fail to hold in certain situations, such as when one node’s

sensor fails. We will refer to the assumption that one-way, asymmetric measure-

ment never takes place, together with the assumption that the noise covariances

on parallel edges are equal, as symmetric measurement. Fig. 6.1 shows an example

of such a symmetric directed graph. In the terminology of Section 2.2.2, G is a

matrix-weighted graph with edge weights specified by a function W : E → Sk+,

where Wu,v = R−1
u,v.

Our goal is to determine how the structure of the graph and the measurement

noises affects the formation error. The formation error of a node u ∈ V is defined

as

eu(t) = xu(t)− xo(t)− ru,o. (6.4)

where ru,o is the desired relative position of u w.r.t. the reference o. Due to mea-

surement noise, this error will be random, so we also look at its auto-covariance:

Σu,o = E
[
(eu(t)− E[eu(t)])(eu(t)− E[eu(t)])

T
]
. (6.5)

We use a control law in which each node uses all its measurements to construct

an optimal estimate of the difference between its currently position and what

this “should” be, in view of what it know about its neighbors positions. The

measurements available to an arbitrary node u ∈ V are

yu,v = xu − xv + εu,v, ∀v ∈ Nu,
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A =

[
−I 0 I I I 0 −I 0 −I 0
0 −I 0−I 0 I I I 0 −I 0
0 0 0 0 −I 0 0 −I I I

]

B =
[

I I I 0 0 0 0 0
0 0 0 I I I 0 0
0 0 0 0 0 0 I I

]

Figure 6.1. A symmetric interconnection graph, its generalized incidence matrix

A, and the matrix B.

where Nu ⊂ V denotes set of nodes v such that (u, v) ∈ E . If node u assumes

that all its neighbors are correctly positioned then, according to (6.1), the desired

position of u is given by any one of the following equations

xd
u = xv + ru,v, ∀v ∈ Nu.

Combining the two previous sets of equations, we obtain

yu,v = xu − xd
u + ru,v + εu,v, ∀v ∈ Nu,

from which nodes u estimates its position error xu − xd
u. It is straightforward to

show that the best linear unbiased estimate of xu − xd
u is given by

D−1
u

∑

v∈Nu

R−1
u,v

(
yu,v − ru,v

)
,

where Du :=
∑

v∈Nu
R−1

u,v. This motivates the following negative proportional

control law for the nodes

ẋu = −γD−1
u

∑

v∈Nu

R−1
u,v(yu,v − ru,v), ∀u ∈ V \ {o}, (6.6)

where γ denotes some positive number.

For analysis purposes it is convenient to describe the system dynamics in term

of positions with respect to the reference. Defining x̃u = xu − xo, one concludes
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that

˙̃xu = −γD−1
u

∑

v∈Nu

R−1
u,v(x̃u − x̃v − ru,v + εu,v)− ẋo,

for every u ∈ V \ {o}. By stacking all the positions x̃u, u ∈ V \ {o} in a column

vector x̃, the above systems can be written as follows:

˙̃x = −γM−1L x̃ + γM−1
BW(r − ε)− ẋo1, (6.7)

where r is a column vector obtained by stacking all the ru,v on top of each other;

ε is a column vector obtained by stacking all the εu,v; 1 is a n − 1 × 1 column

vector of all 1’s; W > 0 is a block-diagonal matrix with k rows/columns for each

edge in E , with the weights Wu,v := R−1
u,v, (u, v) ∈ E in the diagonal; M > 0

is a block-diagonal matrix with k rows/columns for each node in V \ {o}, with

Du, u ∈ V \ {o} as defined earlier in the diagonal; L = 1
2
AbWAT

b where Ab is

the generalized basis incidence matrix for the directed graph (V ,E); and B is a

matrix with k rows for each vertex in V \ {o} and k columns for each edge in

E , constructed as follows: the k columns corresponding to edge (u, v) ∈ E are

all equal to zero except for the block corresponding to the node u, which is equal

to Ik. The white noise process ε has block diagonal auto-covariance matrix given

by E[ε(t1)ε
T (t2)] = δ(t1 − t2)W−1. Figure 6.1 shows an example of the matrices

defined above.

The compact form of the closed loop dynamics (6.7) explains the terminology

Laplacian disagreement control – because of the appearance of the Dirichlet Lapla-

cian L . Similar control laws have been studied in the literature on multi-vehicle

control and multi-agent consensus [29, 30, 128].

The main result of this section is the following:

Theorem 6.3.1. Consider the problem of formation control with a finite number

of mobile nodes, described by the directed graph G and a function R : E → Sk+
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that describes the auto-covariance of the measurement error process (6.3), in which

every node implements the Laplacian disagreement control law (6.6). When as-

sumption 6.3.1 holds, the closed loop is stable irrespective of the number of vehi-

cles, and the steady state covariance matrices for the formation error for node u

is given by

Σu,o = γReff
u,o,

where Reff
u,o is the matrix-valued effective resistance between u and o in the gener-

alized electrical network (G, R). �

The scaling of matrix-valued effective resistance Reff
u,o as a function of distance

du,o of u from the reference o determine how the structure of the graph G affects

the growth of the effective resistance, and therefore formation error covariance.

Effective resistances in graphs were studied extensively in Chapter 5, was it was

identified that the structure of the graph greatly affects the effective resistances.

In sparse graphs, the effective resistance grows fast with distance from the refer-

ence, whereas in dense networks it grows slowly. In view of Theorem 6.3.1, this

dependence of effective resistance on graph structure has significant implications

for the problem of formation control, which are discussed below.

6.3.1 Implications for man-made autonomous agents

The preceding discussion shows that the maximum tracking errors in two net-

works consisting of the same number of agents can be quite different. As a result,

some networks are more scalable than others in terms of tracking performance.

This knowledge can be used for designing networks that are formed by groups of

mobile autonomous agents, such as UAVs. Frequently, the formation structure of
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such agents is designed solely on the basis of the task that the group is expected

to perform. However, our results show that a formation structure itself imposes

fundamental limitations on how well that formation can be maintained by the

agents. Thus, if the agents are required to maintain their formation accurately,

then the desired formation itself has to be appropriately chosen. For example, it

will be unwise to ask a large group of agents to fly in a single line while main-

taining very accurate spacings between neighbors, since we know that in such a

graph the tracking error grows linearly with the number of agents.

6.3.2 Implications for Swarming in Nature

While the exact nature of motion coordination among biological agents is

still a mystery, the control law (6.6) is nevertheless an approximation of the mo-

tion coordination schemes that are proposed to explain swarming behavior in

animals [135, 136]. This control law is extremely simple and requires only in-

formation about nearby agents, which can be obtained by animals through their

vision and/or auditory sensors. Moreover, measurement noise is likely to affect

the relative position estimates as modelled in (6.2).

The analogy between effective resistance and formation error covariance can

explain a number of puzzling observations from nature. For example, it is well

know that several species of birds fly in a “V”-formation (cf. Fig. 6.2(a)). Although

why this happens is still a matter of debate (both drag reduction and better visual

cue have been offered to explain this phenomenon; see [22] for arguments for the

former and [127] for arguments against the former and for the latter), it is observed

that the birds close to the leader can maintain their relative positions better than

the birds toward the end of the arms of the “V”. An example is shown in the
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(a) A flock of birds in “V”-

formation

(b) A school of fish

Figure 6.2. Examples of 1-D and 3-D network topologies in natural swarms.

Photograph in (b) courtesy Sergey Parinov (http://www.sergeyphoto.com)

photograph of Figure 6.2(a). Such large formation error in bird flocks might

be explained by the fact that a V-formation is sparse in 1-dimension and hence

the effective resistance are large when the number of birds in the flock is large

(see Theorem 5.3.1). On the other extreme, schools consisting of millions of fish

are known to move together in a 3-dimensional structure in a surprisingly agile

fashion [137]. In a large school of fish such as the one shown in Fig. 6.2(b), the

interconnection topology is 3-dimensional. It is not hard to see that the network in

such a large school will be dense in 3-D, if we image it as being a part of an infinite

graph. Hence the tracking error variance of the individuals remain bounded even

when the number of nodes (fish) making up the school is arbitrarily large. This

might explain why large fish schools can move together and maneuver quickly even

while forming an extremely large network while a comparatively small number of

birds flying straight find it difficult to keep a constant separation.
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Proof of Theorem 6.3.1. Construct a graph Ḡ = (V , Ē) whose edge set Ē consists

of exactly one for every pair of parallel edges in E . Construct an edge-weight

function W̄ : Ē → Sk+ as follows:

W̄u,v = 2Wu,v (6.8)

It can be verified that due to the assumption of symmetry, L = ĀT
b W̄ĀT

b , where

Āb is the basis incidence matrix of Ḡ w.r.t. o and W̄ is a block diagonal matrix

with W̄e, e ∈ Ē on the diagonal. Recalling the definition of a Dirichlet Laplacian of

a matrix weighted graph from Section 2.2.2, we see that L is exactly the matrix-

weighted Dirichlet Laplacian for the matrix-weighted graph Ḡ = (V , Ē) with

boundary {o} and with weight W̄u,v = R−1
u,v on every edge (u, v). Since γ > 0, and

M and L are positive definite (see Theorem 2.2.1), we conclude that (6.7) is an

asymptotically stable system.

We further re-write (6.7) as

˙̃x = −γM−1L x̃ + w + b,

where b := γM−1BWr − ẋo1 and w := −γM−1BWε is a white noise random

process with auto-covariance matrix given by

E[w(t1)w
T (t2)] = γ2

M
−1

BW E[ε(t1)ε
T (t2)]WB

T
M−1

= γ2δ(t1 − t2)M−1
BWB

T
M

−1 = γ2δ(t1 − t2)M−1,

where we used the fact that BWBT = M. Since the Lyapunov equation

−γM−1LΣ∞ − γΣ∞LM
−1 + γ2

M
−1 = 0

has a positive definite solution

Σ∞ =
γ

2
L−1,
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it is straightforward to show that the covariance matrix of x̃ converges to Σ∞. In

particular, the steady-state covariance matrix of the relative position x̃u := xu−xo

is given by k × k diagonal block of Σ∞.

From Corollary 4.6.1, this diagonal block is γ/2 times the effective resistance Reff
u,o

between u and o in the generalized electrical network (Ḡ, R̄) where R̄u,v = W̄u,v,

(u, v) ∈ Ē . Because of the role of parallel resistance formula (see Proposition 4.6.1

and Section 2.2.3), this effective resistance in the network (Ḡ, R̄) is twice the

effective resistance in the network (G,R), which proves the theorem.

6.4 Lower bound on the Dirichlet Laplacian spec-

trum from effective resistance

In this section we will establish bounds on the smallest eigenvalue of the Dirich-

let Laplacian using effective resistances. Motivation for obtaining bounds on this

eigenvalue is summarized in the next section.

6.4.1 Role of the Dirchlet Laplacian spectrum

6.4.1.1 Convergence rate of discrete-time algorithms

We have already seen in Chapter 3 that the convergence rate of a distributed

estimation algorithm depends on this eigenvalue(cf. Theorem 3.3.4). The number

of iterations niter(ε) needed to drive the error ratio below a certain value 0 < ε < 1

is given by

niter(ε) = Θ(
1

λmin(L)
),
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where L is the Dirichlet Laplacian. Similar results hold for the well-known av-

erage consensus algorithms, in which the nodes of a multi-agent network update

their state by computing the average of their states with that of their neigh-

bors [138]. When the communication graph of the average consensus algorithm is

a fixed undirected graph G, and the nodes run the average consensus algorithm to

reach consensus with a reference node, which keeps its state fixed, then the error

dynamics of the nodes can be expressed as

x(i+1) = Jx(i),

where J is the Jacobi iteration matrix for the graph G with a reference nodes o,

which was defined earlier in 3.19. Since this is identical to the error dynamics of the

Jacobi algorithm described in Section 3.3.1.2, the results of Theorem 3.3.4 apply.

So the convergence rates of both the Jacobi and average consensus algorithms can

be directly obtained from λmin(L).

6.4.1.2 Convergence rate of continuous-time algorithms

Recalling the formation control example of Section 6.3, we see that the stability

of the closed loop is determined by that of the system

ẋ = −γD−1Lx. (6.9)

Therefore, the time constant of formation errors is given by the smallest eigenvalue

of the matrix D−1L, which is given by 1
dmax

λmin(L). The dynamics (6.9) also

represent a continuous time consensus algorithm [29], where nodes of the network

are trying to reach consensus with the reference o. Therefore the time constants

of such consensus algorithms are also dependent on λmin.

Apart from the examples above, we will see in Section 7.3.1 another example

of λmin’s role, in case of control of a platoon with a dynamic compensator.
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6.4.2 Effective resistance between a node and a set of

nodes

Before proceeding further, we define the matrix-valued effective resistance be-

tween a node and a set of nodes, which can be thought of as an extension of the

generalized effective resistance between two nodes defined in Section 4.4.2. This

effective resistance definition is useful when there are more than one reference

nodes, e.g., when there are multiple leaders in a formation.

Consider a directed graph G = (V ,E) and let Vr ⊂ V . Recall from Sec-

tion 2.2.1 that G is weakly connected to Vr, where if there is a (undirected) path

from every node in the graph to at least one of the nodes in Vr. Theorem 2.2.1

shows that the Dirichlet Laplacian L of the network (G, R) is invertible if and

only if G is weakly connected to Vr. Recall that L = AbWAT
b , where Ab is the

generalized basis incidence matrix of G andW is the block diagonal weight matrix:

W := diag(W1, . . . ,Wm), where m is the number of edges (see Section 2.2.2).

We now formally define a node u’s effective resistance to Vr, denoted by

Reff
u (Vr), as the k × k block in the main diagonal of L−1 corresponding to the

k rows/columns associated with the node u ∈ V \Vr. This terminology is justi-

fied by the fact that the matrix Reff
u (Vr) also express a map from (matrix-valued)

currents to (matrix-valued) voltages in an appropriately defined electrical network,

especially when the reference node set consist of a single node (see Section 4.4.2).

Here we restrict ourselves to finite networks, unlike Chapter 4.
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6.4.3 Lower bound from effective resistance

The lower bound on the smallest eigenvalue of the Dirichlet Laplacian follows

from the next lemma. L is the Laplacian and L is the Dirichlet Laplacian.

Lemma 6.4.1 (Spectrum of L and L ). Assume that G = (V ,E) is weakly

connected to Vr ⊂ V and denote by λ1(L ) ≤ λ2(L ) ≤ · · · ≤ λnk(L ) the sorted

eigenvalues of L and by λ1(L) ≤ λ2(L) ≤ · · · ≤ λ(n−nr)k(L) the sorted eigenval-

ues of L . For every i ∈ {1, 2 . . . , (n− nr)k}

λi(L) ≥ 1
∑

u∈V \Vr
traceReff

u (Vr)
> 0 (6.10)

and

λi(L ) ≤ λi(L) ≤ λi+knr
(L ). (6.11)

�

Proof of Lemma 6.4.1. By definition, the effective resistance Reff
u (Vr) is a diagonal

block of L−1. The inequality (6.10) is a consequence of the fact that any eigenvalue

of the positive definite matrix L−1 can be upper-bounded by its trace, which can

be obtained by adding up all the traces of its diagonal blocks Reff
u (Vr), u ∈ V \Vr.

This means that every eigenvalue of L−1 satisfies:

λi(L−1) ≤ trace L−1 =
∑

u∈V \Vr

traceReff
u (Vr),

from which (6.10) follows since the eigenvalues of L−1 and L are reciprocals of each

other. The inequality (6.11) is a direct application of the Interlacing Eigenvalues

Theorem [139, Theorem 4.3.15] to the symmetric matrices L and L , upon noting

that L is a principal submatrix of L (cf. definitions of L and L in Section 2.2.2).
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Figure 6.3. The relationship between algebraic connectivity and the smallest

eigenvalue of the Dirichlet Laplacian.

To understand the implication of this result and its use, consider the case when

all the edge weights are scalars and equal to unity, i.e., We = 1 for every e ∈ E .

In this case L = Lo, where Lo is usual graph Laplacian of G, thinking of G as

an undirected graph. The unweighted Dirichlet Laplacian L with the boundary

{o} is a principal submatrix of Lo obtained by removing the row and column

corresponding to o. By the interlacing of eigenvalues for symmetric matrices, we

have

λmin(L) ≤ λ2(Lo),

where λ2(Lo) is the second smallest eigenvalue of the Laplacian, which is also

called the algebraic connectivity of G [82]. This interlacing is shown graphically

in Figure 6.3.

Therefore any upper bound on the algebraic connectivity is an upper bound on

λmin(L) as well, but a lower bound on the algebraic connectivity is not necessarily

a bound on λmin of any kind. As a result, although an extensive literature exists on

bounding the algebraic connectivity of a graph (see [140, 141], and especially [81]

for a good overview), these results are not useful in bounding λmin from below. On

the other hand, we need lower bounds on λmin to bound the worst case performance

for the applications discussed in Section 6.4.1.
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6.5 Comments and open problems

In this section we saw evidence that the matrix valued effective resistance

introduced in earlier chapters is useful in the analysis of decentralized control

problems as well. The effect of graph structure in propagating noise was examined,

and it was shown that the noise propagation can be characterized by the effective

resistance. Effective resistance also yielded an unexpected benefit - a lower bound

on the Dirichlet Laplacian eigenvalues was obtained as a function of the effective

resistances. This bound is potentially valuable since there are few results on lower

bounding Dirichlet Laplacian eigenvalues, which appear in several control and

estimation problems.

To make good use of this bound requires knowledge of the effective resistances

in the graph. Effective resistances have seen renewed popularity in recent years.

Several aspects of effective resistances in graphs have been investigated. After

the seminal work of [2] on transience and recurrence of random walks in infinite

graphs using effective resistance, Chandra et al. [14] showed that the cover and

commute times of a random walker in a finite graph is also captured by the effective

resistances in the graph. The sum of all pairwise effective resistance for a number

of special graphs have been studied in Zhang and Yang [142], whereas Ghosh et al.

[143] provides numerical methods for minimizing the total effective resistance by

choosing the edge resistances appropriately (subject to some constraints). Wu

[120] obtained exact formulas for effective resistances in finite 2D and 3D grids.

The matrix-valued effective resistances when each edge has a constant generalized

resistance, can be easily obtained from these results by employing Lemma 4.6.1

that relates the two.

Only time-invariant interconnections were examined in regards to both error
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propagation and stability margin. In certain situations the interconnections be-

tween the agents might vary with time. Error propagation in such time-varying

graphs needs is an interesting open problem. Furthermore, the interconnection

structure considered was symmetric, which is the reason the Dirichlet Laplacian

and effective resistance appears naturally. Revisiting the issues examined here,

but with asymmetric interconnection, is a wide open problem.

Another limitation of the formation control problem described in Section 6.3

is that the agent dynamics and the control laws are quite simple, with agent

dynamics assumed to be first order and control law, proportional. There is a need

to examine the issues of error propagation in multi-agent control systems with

more complex dynamics and control laws. One such problem will be examined in

the next chapter.
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Chapter 7

Control of vehicular platoons:

symmetric bidirectional control

7.1 Introduction

In this chapter we study the problem of controlling a string of vehicles mov-

ing in one dimension such that they all follow a lead vehicle with a constant

spacing between successive vehicles (c.f. Figure 7.1). The capacity of highways

can be increased by a significant amount if small inter-vehicular distances can

be maintained [6]. Since human drivers cannot be expected to maintain small

inter-vehicular distances due to safety reasons, one way to achieve this objective

is automated driving using feedback control. A successful demonstration of a

platoon of eight vehicles automatically controlled to follow a lead vehicle was con-

ducted in 1997 by the National Automated Highway Systems Consortium under

the California PATH(Partners for Advance Transit and Highways) program [144].

Due to its relevance to developing automated highway systems, the problem of
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Figure 7.1. platoon of vehicles

controlling a platoon of vehicles has been studied extensively. We will discuss the

prior work done in this problem in Section 7.2.1.

The automated platoon problem is a special case of the formation control

problem that was already introduced in the previous chapter. The difference

here is that the formation we are trying to keep is in R
1 instead of being in

2 or 3 dimensions. Simplification in the spatial dimension is accompanied by

a complexification in other aspect of the problem – we will allow higher order

dynamics and controllers than in Chapter 6.

Consider a platoon of N vehicles moving in one dimension following a lead

vehicle, as shown in Figure 7.1. The lead vehicle moves independently of the other

N vehicles, who try to maintain a constant gap ∆ between successive vehicles.

The lead vehicle may be a real vehicle with its own dynamics, or a fictitious vehicle

that represents a reference trajectory provided to the first vehicle of the platoon.

Let Z0(t) denote the position of the lead vehicle and Zi(t), i ∈ {1, 2, . . . , N}, the

position of the ith vehicle. The ith vehicle can measure the errors with respect

to its predecessor and follower, namely, ζi,i−1(t) and ζi+1,i(t), by on-board sensors

such as radars, where

ζi,i−1(t) := (Zi−1(t)− Zi(t)−∆) + εi,i−1(t),

where the desired spacing, ∆, is a positive constant and εi,i−1(t) is measurement

noise.
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Our interest is in decentralized control architectures in which every vehicle

computes its control signal based on locally available spacing error measurements.

The control refers to the signal fed to the actuator that drives the vehicle. How

the control signal affects the position and velocity of the vehicle therefore depends

on the model of the vehicle dynamics. Although the dynamics of a highway vehicle

are typically non-linear, they can be converted to that of a double integrator (i.e.,

a point mass without damping) by feedback linearization [145, 146]. However,

since the dominant aerodynamic drag on a vehicle is quadratic in its velocity (see

the models described in [146, 147]) a Jacobian linearization around the nominal

velocity results in a model that has a single integrator in series with a low pass

filter. We will consider both types of linear models of vehicles, with two integrators

as well as one.

An extensively studied decentralized control architecture is the predecessor

following, in which the control action on a particular vehicle depends on its spacing

error with the predecessor, i.e., the vehicle in front of it. However, the predecessor

following architecture is known to suffer from the limitation that the disturbances

acting on the vehicles lead to large inter-vehicular spacing errors. We will discuss

these limitations in Section 7.2.

Another decentralized control architecture that is investigated in the literature

is bidirectional control. In this scheme, the control action on a particular vehicle

depends on the spacing errors with respect to its predecessor and its follower.

Most human drivers use information about preceding and following vehicles to

control their own vehicles - especially in heavy traffic, so bidirectional control

is intuitively appealing. In symmetric bidirectional control, the control effort is

equally dependent on the spacing errors with the preceding vehicle and the fol-

lowing vehicle. The effect of disturbances acting on the vehicles on the spacing
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errors with symmetric bidirectional control was analyzed by Seiler et al. [32], who

showed that when the vehicle model has two integrators and controller does not

have an integrator, the disturbances acting on the vehicles result in large spacing

errors.

In this chapter we examine symmetric bidirectional control and answer the

questions left unanswered in [32]. We answer the question of stability and dis-

turbance amplification when the vehicle model has either one, or more than two

integrators; and also characterize the effect of the lead vehicle’s trajectory on the

spacing errors of all the vehicles. The results are independent of the choice of

the controller but are due to the interconnection structure imposed by symmetric

bidirectional architecture.

Chapter organization: We first review the literature on the control of platoons

in Section 7.2 and then briefly summarize our results. In Section 7.2, we formulate

the problem and present the results in Section 7.3. Every theorem is about a

different aspect of the problem, such as stability, steady-state tracking error, and

disturbance amplification, and hence is presented in a separate subsection. An

intuitive explanation of the results is provided in Section 7.3.5. The chapter

concludes with comments on open issues in Section 7.4.

7.2 Prior work and contributions

7.2.1 Prior work on vehicular platoons

There is an extensive literature on automated vehicular platoon problem.

Early work on platoons can be dated back at least half-a-century ago, to [31].

Early interest, in the 50’s and 60’s, in this problem stemmed from the proposals to
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build Automated Guided Transit (AGT) system with electrically powered vehicles

as a way of mitigating increasing urban problem of “..congested roadways, large

numbers of accidents and fatalities, and extremely powerful automobiles [148]”.

Due to space limitations, we will only review work on the so-called “constant-

spacing policy”, in which the goal is to maintain constant inter-vehicular sepa-

ration. Other policies, such as constant-time headway and constant safety-factor

policies [149] will not be discussed.

Among decentralized schemes, the predecessor-following architectures was the

one studied the first and perhaps the most (see [7, 149–151] and references therein).

Still, it was recognized early on that disturbances acting on the vehicles tend to get

amplified in predecessor-following control. For this reason, predecessor-following

was considered not stable in [31]. The disturbance amplification tendency is usu-

ally referred to as “string instability”. Although a precise definition of string

instability – mainly motivated by the platoon problem – was offered much later

in [152], the term itself was in vigorous use for a long time. Mention of the phrase

can be found in such early references as [149, 151, 151]. The term “spatial asymp-

totic stability” was also used in place of string stability in [150]. More recently,

the term “slinky-type effects” has also been used to describe the phenomenon of

error amplification in vehicle strings [153].

Although extensively studied, it took quite a while before a thorough under-

standing of the limitations of the predecessor-following architecture’s was devel-

oped. That the limitations are fundamental in nature and independent of the

controller’s design, was shown much later, by Seiler et al. [32].

As the limitations of predecessor-following were observed quite early, it led

to the proposal of a predecessor-and-leader-following architecture, in which the

control action at a vehicle depends on, in addition to the predecessor’s error, the
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error with respect to the lead vehicle in the platoon. It was shown, e.g., in [151],

that such a scheme will in fact damp out disturbances all along the platoon.

Clearly, it is not a decentralized architecture. The demonstration of automated

platooning in 1997 used this architecture [144].

Unfortunately, the predecessor-and-leader-following scheme also suffers from

severe limitations. In particular, it was shown in Liu et al. [154] the closed loop

becomes highly sensitive to the time delays incurred in transmitting the lead

vehicle’s position information to the rest of the platoon.

The LQR control of platoons, which typically leads to a centralized architec-

ture, was investigated as early as 1966 [155]. LQR control of an infinite string of

vehicles were investigated in [156] and in [157], though a more complete analysis

was provided only in 2005 by Jovanović and Bamieh [158]. It was shown in [158]

that the optimal control of the platoon is effectively ill-posed when the number of

vehicles is large, namely, that the time constant of the closed loop become arbi-

trarily small as the number of vehicles become arbitrarily large. Since the optimal

control of a platoon suffers from such limitations, it is perhaps not surprising that

the decentralized control suffers from limitations as well.

The discussion above shows that even the centralized schemes, such as LQR

and leader-and-predecessor-following fail to remove the difficulties of decentralized

predecessor-following scheme. Therefore, it behooves us to examine other decen-

tralized architectures that, although cannot be expected to not suffer from any of

the limitations discussed above, at least has the potential of performing reason-

ably well. The bidirectional architecture is a natural choice, which was analyzed

in [159] and claimed to not suffer from string instability. This claim was, however,

erroneous since the measure of string stability used only ensured that disturbances

will be damped out in going from front to the back of the platoon, but not the
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other way around. Bidirectional architecture was also investigated in the non-

linear setting by Zhang et al. [153], whose proposed design was able to achieve

stability without “slinky-type effects”, which is another name preferred by several

researchers in place of string instability. In the linear case, the disturbance ampli-

fication properties of the symmetric bidirectional scheme were examined in [32],

which showed that for a certain class of plants and controllers this architecture

also suffers from limitations that are controller-independent.

7.2.2 Main results

The results presented in this chapter are the summarized below. All the results

apply only to the case of symmetric bidirectional architecture, and when the

vehicle and controller models are linear. In the sequel, the plant H(s) denotes the

transfer function from control input to vehicle position, and the controller K(s)

denotes the transfer function from the position error to the control input.

1. It is possible to design the controller K(s) so that the closed loop is stable

for an arbitrarily large but finite number of vehicles, as long as the number

of integrators in the loop H(s)K(s) is not more than two. When H(s)K(s)

has either one or two integrators, if H(s) is non-minimum phase, for every

stable controller K(s), the closed loop will become unstable for a sufficiently

large number of vehicles. If the total number of integrators in H(s)K(s) is

more than two, then the closed loop will be unstable for a sufficiently large

number of vehicles, irrespective of how K(s) is designed.

2. When H(s)K(s) has two integrators, if the lead vehicle moves at constant

velocity, the steady state spacing errors for every vehicle will go to 0, irre-

spective of the number of vehicles in the platoon. When H(s)K(s) has only
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one integrator, if the lead vehicle moves at a constant velocity, the steady

state error is finite for a finite platoon size, but the norm of this error grows

without bound as the number of vehicles in the platoon increases.

3. When H(s)K(s) has two integrators, in the absence of disturbances on the

vehicles, if the lead vehicle trajectory deviates from a constant-velocity one,

the L2 norm of the spacing errors will grow unbounded as the number of

vehicles increases, even if the deviation has bounded L2-norm. However,

when H(s)K(s) has only one integrator, if the deviation of the lead vehi-

cle’s trajectory from a constant velocity one is L2-norm bounded, then the

spacing errors of the entire platoon are L2 norm bounded, too, irrespective

of the number of vehicles.

4. When K(s) has no integrators, the H∞ norm of the transfer function from

the disturbances acting on the vehicles to the spacing errors will grow with-

out bound as the number of vehicles increases, irrespective of whether H(s)

has either one or two integrators. Thus, even if the lead vehicle is moving at

constant velocity, if disturbances are present in the control signal – as they

invariably will – large spacing errors will result for a large platoon.

The case of H(s)K(s) having no integrators is not considered, since a realistic

model of a vehicle for a highway will have at least one integrator. In fact, vehicle

models as simply double integrators (fully actuated point masses with no damp-

ing) are quite common in the literature [32, 145, 146]. Even models with three

integrators have been studied in the literature, e.g., the vehicle model in [147],

which result from feedback linearization of high-order non-linear vehicle models.

Effect of disturbance when K(s) and H(s) each has one integrator has not been

studied in this dissertation.
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Figure 7.2. The interconnection architecture graph for symmetric bidirectional

control. The symmetry of the interconnection graph is manifested in the graph

being undirected.

It is important to notice that the results are independent of how the controller

K(s) is chosen. In short, the limitations of the symmetric control architecture

cannot be ameliorated with clever control design. The results in this chapter have

been reported earlier in [160]. The results for H(s) with two or more integrators

were also proved by Yadlapalli et al. [161] independently.

7.3 Problem statement and main results

Let N, R and C denote the set of natural, real and complex numbers, respec-

tively. As shown schematically in Figure 7.1, the platoon consists of N vehicles

moving in one dimension following a lead vehicle, where the lead vehicle moves

independently of the other N vehicles. Let Z0(t) denote the position of the lead

vehicle and Zi(t), i ∈ {1, 2, . . . , N}, the position of the ith vehicle. The spacing

error of the ith vehicle is defined by

Ei(t) = Zi−1(t)− Zi(t)−∆, (7.1)

where the desired spacing, ∆, is a positive constant. The lead vehicle may be a real

vehicle with its own dynamics, or a fictitious vehicle that represents a reference

trajectory provided to the first vehicle of the platoon. The control objective is

to keep the spacing error for every vehicle as small as possible while maintaining

closed loop stability. We assume that,
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1. the dynamics of individual vehicles are identical, and the transfer function

from control input to vehicle position is denoted by H(s),

2. H(s) is SISO and has at least one integrator,

3. all vehicles use the same control law, and

4. the string of vehicles start with zero spacing errors, from rest, and the lead

vehicle starts at Z0(0) = 0. Hence, Zi(0) = −i∆.

Let X(s) denote the Laplace transform L(·) of a time-domain signal X(t):

Z(s) := L(Z(t)).

Applying the assumptions, each vehicle can be modelled in the Laplace domain

as

Xi(s) = H(s)(Ui(s) +Di(s)) +
Zi(0)

s
, 1 ≤ i ≤ N, (7.2)

where Zi(0) is the initial position of the ith vehicle, Ui(s) is the Laplace transform

of the control signal, and Di(s) = L(Di(t)) is the Laplace transform of the input

disturbance Di(t) to the ith vehicle. The effect of measurement noise can be

absorbed into the input disturbances Di(t), so from now on we can assume that

the noise free errors Ei(t) can be measured by the vehicles.

The ith spacing error in the Laplace domain is given by

Ei(s) = Zi−1(s)− Zi(s)−
∆

s
, 1 ≤ i ≤ N. (7.3)

Using (7.3) and (7.2) and using Zi(0) = −i∆, we can write the error dynamics of

the entire vehicle platoon as

Ē(s) = Z0(s)φ1 + P (s)
[
D̄(s) + Ū(s)

]
(7.4)
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where φ1 ∈ R
N is the 1st element of the canonical basis of R

N and

Ē(s) := L(Ē(t)), Ē(t) = [E1(t) . . . EN (t)]T ,

D̄(s) := L(D̄(t)), D̄(t) = [D1(t) . . .DN(t)]T ,

Ū(s) := [U1(s) . . . UN (s)]T ,

P (s) := −H(s)MT ,

where M is defined as

M :=





1 −1

...
...
... −1

1



 ∈ R
N×N . (7.5)

In a symmetric bidirectional control scheme, each vehicle bases its control action

on the error feedback from its predecessor and follower with equal emphasis. The

control action is

Ui(s) = K(s) (Ei(s)− Ei+1(s)) , 1 ≤ i ≤ N. (7.6)

Since the last vehicle in the string does not have a follower, it uses the controller

UN(s) = K(s)EN(s). The vector of platoon control inputs is given by

Ū(s) = K(s)MĒ(s)

which is a restatement of (7.6). Eliminating Ū(s) from (7.4) we can write the

closed-loop error dynamics of the platoon, which is given by

Ē(s) = Gxoe(s)Zo(s) +Gde(s)D̄(s), (7.7)

where

Gxoe(s) = [I +H(s)K(s)L]−1 φ1, (7.8)

Gde(s) = −H(s) [I +H(s)K(s)L]−1MT , (7.9)

and L := MTM ∈ R
N×N . The matrix L is given by

L =





1 −1 0 ...
−1 2 −1 ...
0 −1 2 −1 ...

... −1
−1 2



 . (7.10)
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The matrix L is similar to the Laplacian matrix of the undirected graph whose

nodes are the vehicles and the edges are the measurements/communications be-

tween neighboring vehicles. In fact, L is exactly the Dirichlet Laplacian (defined

in Section 2.2.2) for the line graph with N nodes with unity edge weights and a

node at the end as the boundary, that is shown in Figure 7.2. This graph de-

scribes the interconnection structure among the vehicles in an N -vehicle platoon

with symmetric bidirectional control.

The results on various aspect of the problem, including closed loop stability,

steady state error, amplification of disturbance in the lead vehicle’s trajectory,

and of the disturbances acting on all the vehicles, are presented next.

7.3.1 Closed loop stability with symmetric bidirectional

control

Theorem 7.3.1. Consider the closed loop error dynamics of the platoon with

symmetric bidirectional control, given by (7.7).

1. For closed loop stability of the platoon with arbitrary N , H(s)K(s) cannot

have more than two integrators.

2. For closed loop stability of the platoon with N vehicles following the leader,

every transfer function Gi(s) = 1/(1+λiH(s)K(s)), i = {1, 2, . . . , N} must

be stable, where λi is the ith eigenvalue of the matrix L ∈ RN×N defined in

(7.10), and consequently, K(s) cannot have zeros at 0.

3. Define H(s)K(s) = C(s)/sk with C(0) finite. Then for closed loop stability

with arbitrary N , we must have C(0) > 0. �
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We have already discussed that for H(s) to be a reasonable model of a vehicle

in a highway, H(s) must have at least one integrator. The theorem above shows

that for the closed loop to be stable with symmetric bidirectional control for

arbitrary number of vehicles, the vehicle dynamic model cannot have more than

two integrators. Moreover, closed loop stability for arbitrary N is impossible when

either the vehicle dynamics or the controller is non-minimum phase. It is clear

from the Theorem that stability margin will be determined by λmin(L), which is

related to the effective resistances in the control architecture graph in Figure 7.2

(see Section 6.4).

7.3.2 Steady-state errors

In an automated highway system, it is in general desired that the vehicles

move at a constant velocity for safety, comfort, and fuel-efficiency. This can be

achieved by providing a constant velocity reference to the first vehicle of the

platoon, which is equivalent to introducing a fictitious lead vehicle that moves

at a constant velocity at all times. In this section we will show that if the lead

vehicle moves at a constant velocity, i.e.,

Zo(t) = Zref
o (t) = Vdt, (7.11)

where where Vd is the desired constant velocity, and H(s)K(s) has two integrators,

then all the platoon spacing errors can be made to converge to 0. If H(s)K(s) has

a single integrator, then the steady state platoon spacing error vector is non-zero,

and the norm of the steady-state error grows without bound as N increases. This

is stated in the next theorem.

Theorem 7.3.2. Consider the case when there are no disturbances acting on the

vehicles, i.e., D̄(t) ≡ 0, and the lead vehicle moves at a constant velocity at all
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times, i.e., Zo(t) = Vdt, where Vd > 0 is the desired constant velocity. Let K(s)

be such that it achieves closed loop stability of the platoon error dynamics with

symmetric bidirectional control. Then the following are true:

1. If H(s)K(s) has two integrators, then, ∀N ∈ N,

lim
t→∞

Ē(t) = 0.

2. If H(s)K(s) has one integrator, then for a platoon of size N , ∃E∞ ∈ RN ,

such that,

lim
t→∞

Ē(t) = Ē∞ 6= 0,

and, for every R > 0, ∃No ∈ N such that ‖Ē∞‖ > R, ∀N > No, where

‖Ē∞‖ denotes the Euclidean 2-norm of the N-vector Ē∞. �

Since the steady state spacing errors grow without bound as the platoon size

increases, it means for a sufficiently large platoon, there might be collisions be-

tween vehicles in the platoon.

7.3.3 Effect of lead vehicle’s deviation from constant ve-

locity

In certain cases, the platoon might have a lead vehicle that is not a fictitious

reference but a real vehicle with dynamics. Due to disturbances entering the lead

vehicle, it is reasonable to expect that the leader trajectory will deviate from the

constant velocity reference trajectory, at least by a small amount. In this case,

the lead vehicle’s trajectory can be modelled as

Zo(t) = Vdt+ ζo(t),
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where ζo(t) is the error from the constant-velocity trajectory.

We effect of deviations in the lead vehicles trajectory from a constant velocity

one on the spacing errors in the platoon is stated in the next theorem. The proof

of the result is provided in Section 7.5. In the statement of the theorem, ‖ · ‖

denotes the Euclidean 2-norm of a real or complex vector and ‖ · ‖∞ denotes the

H∞-norm of a transfer function.

Theorem 7.3.3. Assume H(s)K(s) has two poles at the origin, the closed loop

platoon error dynamics under symmetric bidirectional control is stable for arbi-

trary N . Let Gxoe(s) ∈ CN×1 be the transfer function from lead vehicle position

Xo(s) to spacing errors Ē(s) defined in (7.8). Then,

‖Gxoe‖∞ > βN
1
2 ,

where β is a constant independent of N .

Since Gxoe(s) is also the transfer function from ζo to Ē, the result above shows

that even if ‖ζo‖L2 is bounded, ‖Ē‖L2 will grow unbounded as N increases. The

only situation when low spacing errors can be achieved with zero steady state

error for all vehicles is when ζo(t) ≡ 0, an unlikely scenario.

It turns out that the situation is better when H(s)K(s) has only one integrator,

which is stated next.

Theorem 7.3.4. Assume H(s)K(s) has one pole at the origin, the closed loop

platoon error dynamics under symmetric bidirectional control is stable for arbi-

trary N . Let Gxoe(s) ∈ CN×1 be the transfer function from lead vehicle position

Xo(s) to spacing errors Ē(s) defined in (7.8). Then,

‖Gxoe‖∞ < c

where c is a constant independent of N . �
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Proof of Theorem 7.3.3 is provided in Section 7.5. A proof of Theorem 7.3.4 is

not provided, since it follows directly from the arguments provided in Section 7.3.5,

which offers a intuitive explanation of these results.

7.3.4 Disturbance propagation

To examine the effect of disturbances acting on the vehicles in the spacing

errors, we have to look at the transfer function matrix from the disturbances to

the spacing errors: Gde(s). The question of disturbance propagation was already

investigated by Seiler et. al. in [32], where it was shown that for the symmetric

bidirectional control scheme, it is not possible to design a K(s) to achieve an

uniform bound on ‖Gde‖∞ w.r.t. N , when H(s) has two integrators and K(s) has

none. It follows from theorem 7.3.1 that if H(s)K(s) has three integrators, then

the closed loop platoon error dynamics will be unstable for a sufficiently large

N . This precludes the possibility of K(s) having an integrator when H(s) has

two integrators. We consider only the case of H(s)K(s) having either one or two

integrators. The proof is provided in Section 7.5.

Theorem 7.3.5. Let the controller K(s) be such that the closed loop platoon

dynamics is stable for arbitrary N . Let Gde(s) ∈ CN×N be the transfer function

matrix from D̄(s) to Ē(s) defined in (7.9). If K(s) has no integrators, then,

irrespective of whether H(s)K(s) has one or two integrators, ‖Gde‖∞ > cN for

some constant c independent of N . �

This theorem tells us that even if the disturbances acting on the vehicles are

L2-norm bounded, the L2-norm of the spacing errors due to these disturbances will

grow unbounded as N grows. Therefore a symmetric bidirectional control scheme

is not scalable with respect to disturbance rejection. This result was established
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in [32] for vehicle models with two integrators, with the assumption that K(s)

does not have any integrators. The theorem above shows that even when H(s)

has only one integrator, the result in [32] holds. What happens when H(s) and

K(s) each has one integrator is an open question.

7.3.5 Explanation through graph eigenvalues

We now provide an intuitive explanation of the degradation of performance of

the symmetric bidirectional architecture with increasing N when the loop transfer

function has two integrators. This explanation uses the spectral properties of the

interconnection graph. In particular, the minimum eigenvalue of the Dirichlet

Laplacian of the interconnection graph is seen to have a profound impact on the

performance loss. We will need the following result, which is also used in all the

proofs of the theorems of this chapter.

Lemma 7.3.1. consider the matrix L, as defined in (7.10). Let λmin be the small-

est eigenvalue of L, and let u1 := [u11, u21, ..., uN1]
T be a unit-norm eigenvector of

L corresponding to λmin. Then the following are true:

1

N2
< λmin ≤

π2

N2
, ∀N.

|u11| > N−1/2, ∀N.

Now the explanation. Since L is symmetric, ∃U ∈ RN×N with UTU = UUT =

I s.t. L = UΛUT where Λ is a real diagonal matrix containing the eigenvalues of

L and U = [u1, u2, . . . , uN ], ui being a unit-norm eigenvector of L corresponding

to the ith eigenvalue. The eigenvalues are arranged as

λmin ≤ λ2 ≤ · · · ≤ λN−1 ≤ λmax.
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Figure 7.3. Nyquist plot of H(s)K(s) when H(s)K(s) has two integrators.

Hence,

I +H(s)K(s)L = U(I +H(s)K(s)Λ)UT

⇒ (I +H(s)K(s)L)−1 = U (I +H(s)K(s)Λ)−1 UT .

⇒ Gxoe(s) = UΨ(s)UTφ1

where

Ψ(s) =












1
1+λminH(s)K(s)

1
1+λ2H(s)K(s)

. . .

1
1+λmaxH(s)K(s)












Therefore, for a fixed omega, the 2-norm of Gde(jω) is given by

‖Gxoe(jω)‖ = max
i

∣
∣
∣
∣

1

1 + λmaxH(jω)K(jω)

∣
∣
∣
∣

(7.12)

When HK has two integrators, its magnitude at very low frequencies is ar-

bitrary large and phase is arbitrarily close to 0. As shown schematically in Fig-

ure 7.3, the magnitude of the phasor |1 + λminH(jω)K(jω)| can be made smaller
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Figure 7.4. Nyquist plot of H(s)K(s) when H(s)K(s) has one integrator.

than an arbitrary ε by choosing a small enough ω and a correspondingly small λmin,

which in turn can be done by choosing a large enough N , since λmin = Θ(1/N2).

This is the reason that when the number of vehicles increases without bound,

‖Gxoe‖∞ grows without bound.

If H(s)K(s) has only one integrator, since H(s) has at least one integrator

by assumption, K(s) has no integrator. It is clear from the Nyquist plot of

H(s)K(s), a sample one is shown in Figure 7.4 that the length of the phasor |1 +

λiH(jω)K(jω)| can be kept larger than a positive constant for all i, no matter how

large N is, by an appropriate choice of K. The reason for this is that maximum

λi is 4 and the eigenvalues smaller than 1 only increase |1+λiH(jω)K(jω)|. This

is the reason that ‖Gxoe‖∞ stays bounded no matter what N is.

7.4 Comments and open problems

Control of vehicular platoons, usually posed as an interconnection of point

masses, has practical implications for automated highways. However, even af-

ter five decades of study, it has proved difficult to come up with a satisfactory

solution, that consists of an interconnection architecture and an associated con-
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trol algorithm that ensures guaranteed level of stability margin and robustness to

disturbances.

The bidirectional architecture was the natural one to study when the limita-

tions of the predecessor-following architecture became apparent. Although the

motivation for a bidirectional architecture is clear, the reason for studying the

symmetric version of it is little more than convenience. Since designing separate

controllers for individual vehicles is a challenging task, the problem is simplified

by imposing an arbitrary symmetry. The results in this chapter indicate that

the symmetric bidirectional architecture suffers from limitations that cannot be

ameliorated by better controller design.

The immediate question is, of course, if it might be possible to do better

by removing the symmetry in the interconnection architecture. This question is

answered in the positive in the next chapter.

The other issue identified here is that the difficulty of the platoon problem

comes from the interplay of the interconnection topology (manifested in the graph

eigenvalues) and the unbounded gain and large negative phase of the vehicle model

at low frequencies. It seems that disturbance amplification occurs regardless of

whether the vehicle model has one or two integrators, but the single integrator

case is less sensitive to disturbances cause by the lead vehicle. An answer to the

question of what happens when the vehicle model and the controller each has one

integrator has not been answered here and needs to be examined.

In the work of Zhang et al. [153] on bidirectional control with non-linear plant

models and non-linear controller, the proposed controller was able to achieve

closed loop stability without any “slinky type” effects. However, due to the ex-

ceedingly complex vehicle model used (with engine speed, brake torque, manifold
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pressure etc all appearing in the control design), it is not clear how the design was

able to avoid slinky-type effects. Still, the results in [153] indicate that the per-

haps the problem of vehicular platoon control should be studied in the non-linear

setting for a better chance at avoiding the difficulties identified in this chapter

and elsewhere.

7.5 Proofs

First we provide the proof of Lemma 7.3.1, which is used in all subsequent

proofs.

Proof of Lemma 7.3.1. The matrix M is non-singular, since det(M) = 1, from

(7.5). Since L is a product of a square matrix M and its transpose, and M is

non-singular, L is positive definite [100]. Since L = LT , all eigenvalues of L−1 are

positive real. So the smallest eigenvalue of L is the inverse of the largest eigenvalue

of L−1. Note that L−1 is given by

L−1 =





N N−1 ... 2 1
N−1 N−1 ... 2 1

...
2 2 ... 2 1
1 1 ... 1 1





To prove it, simply multiply the matrix with L and check that an identity matrix

results. From Gerschgorin circle theory, we know that an upper bound for the

largest eigenvalue of L−1 is
∑

(1 + 2 + · · ·+N) < N 2. Therefore, a lower bound

for the smallest eigenvalue of L is 1/N 2. That is, λmin > 1/N2. To get the upper

bound on λmin, let us write L as

L =






1 −φT
1(N−1)

φ1(N−1) L1






N×N
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where φ1(N−1) is the first element of the canonical basis vector of R
N−1 and L1 ∈

RN−1×N−1. It turns out that L1 is the so-called finite-difference matrix. From

Cauchy’s Interlacing Theorem, we know that λmin ≤ µmin, where µmin is the

smallest eigenvalue of L1. It is known [100] that µmin = 4 sin2(π/2N). Moreover,

for θ > 0, sin θ ≤ θ. Hence, µmin ≤ π2/N2, which establishes the upper bound on

λmin.

To prove the second statement, note that since u1 is an eigenvector of L corre-

sponding to the smallest eigenvalue of L, u1 is also an eigenvector of L−1 corre-

sponding to its largest eigenvalue. Since L−1 is a positive matrix, Perron-Frobenius

theory tells us that |u1| := {|u11|, . . . , |uN1|} is also an eigenvector of L−1 corre-

sponding to its largest eigenvalue and that |u1| is a positive vector. Thus, we can

make the unit-norm eigenvector u1 of L, corresponding to λmin, consist entirely

of positive numbers. Let’s write down the equation Lu1 = λminu1 in expanded

form: 










u11 − u21

−u11 + 2u21 − u31

−u21 + 2u31 − u41

. . .












=












λminu11

λminu21

λminu31

. . .












It is easy to check from these equations and the positivity of ui1’s that ui1’s form

a decreasing sequence: u11 > u21 > . . . uN1 > 0. Since
∑
u2

i1 = 1, it follows that

u2
11 > 1/N . This proves the Lemma.

Proof of Theorem 7.3.1. We start by proving the second statement, which is simi-

lar to the results established by Fax et. al. [128] about the role played by the eigen-

values of the graph Laplacian on formation stability. It is also easy to see once we

simplify equation (7.8). Since L is symmetric, ∃U ∈ RN×N with UTU = UUT = I

s.t. L = UΛUT where Λ is a real diagonal matrix containing the eigenvalues of L
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and U = [u1, u2, . . . , uN ], ui being a unit-norm eigenvector of L corresponding to

the ith eigenvalue. The eigenvalues are arranged as

λmin ≤ λ2 ≤ · · · ≤ λN−1 ≤ λmax.

Hence,

I +H(s)K(s)L = U(I +H(s)K(s)Λ)UT

⇒ (I +H(s)K(s)L)−1 = U (I + (HK)Λ)−1 UT .

Using the above and (7.8), we get

Gxoe(s) = U (I +H(s)K(s)Λ)−1 UTφ1

= UΨ(s)UTφ1, (7.13)

where the matrix Ψ(s) ∈ CN×N is defined as

Ψ(s) := (I +H(s)K(s)Λ)−1

=









1
1+λminH(s)K(s)

. . .

1
1+λmaxH(s)K(s)









. (7.14)

This gives us, with (7.13), that

Gxoe(s) =

















N∑

i=1

1

1 + λiH(s)K(s)
u2

1i

N∑

i=1

1

1 + λiH(s)K(s)
u1iu2i

. . .
N∑

i=1

1

1 + λiH(s)K(s)
u1iuNi

















(7.15)

It is clear now that for the closed loop to be stable, each of the transfer functions

1/(1+λiH(s)K(s)) for i ∈ {1, 2, . . . , N} must be stable. As a consequence, there

246



cannot be any unstable pole zero cancellation between H(s) and K(s). Since H(s)

has at least one integrator by assumption, K(s) cannot have any zeros at 0.

To prove (1), we consider the root locus of the system 1+λminH(s)K(s). Suppose

H(s)K(s) has three integrators. Then, at least one of the branches of the root

loci will depart to the right half plane for an arbitrarily small value of λmin, even

though it may eventually return to the left half plane for a large enough value.

Since λmin can be arbitrarily small for N arbitrarily large (Lemma 7.3.1), this

means that 1/(1 + λminH(s)K(s)) will be unstable for a large enough N . Thus,

H(s)K(s) cannot have three integrators. The extension of these arguments to the

case of more than three integrators is trivial.

To prove (3), let C(s) = Nc(s)/Dc(s) where Nc(s) and Dc(s) are coprime poly-

nomials. From the above, C(s) cannot have zeros at the origin. Therefore C(s)

does not have poles or zeros at the origin, so Nc(0) 6= 0 and Dc(0) 6= 0. Consider

the case when H(s)K(s) has two integrators, so the characteristic polynomial of

1/(1 + λminH(s)K(s)) is s2Dc(s) + λminNc(s). If Nc(0) < 0, then λminNc(0) < 0

and the closed loop will have at least one unstable pole. Thus Nc(0) > 0. The

coefficient of s2 in the characteristic polynomial is Dc(0) +λminc2, where c2 is the

coefficient of s2 in Nc(s). If Dc(0) < 0 the coefficient of s2 will be negative when

λmin is small enough, i.e., for a large enough N , even when c2 is positive. This

will make the closed loop unstable. Thus, in order to have closed loop stability

for arbitrary N , we must have Dc(0) > 0. Hence, C(0) > 0. These arguments can

be repeated for the case when H(s)K(s) has one integrator, and we arrive at the

same result. This proves the theorem.

Proof of Theorem 7.3.2. When H(s)K(s) has a double integrator, we can repre-

sent H(s)K(s) as C(s)/s2, where C(s) does not have poles or zeros at zero and
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C(0) > 0. This follows from theorem 7.3.1. Consider the spacing error of the kth

vehicle. Since xo(t) = vot, so Xo(s) = vo/s
2. This, together with equations (7.15)

and (7.7) gives us

sEk(s) =
N∑

i=1

svo

s2 + λiC(s)
u1iuki

Since K(s) stabilizes the platoon dynamics, 1/(s2 + λiC(s)) is a stable transfer

function for i ∈ {1, 2, . . . , N} and therefore lims→0 svo/(s
2 + λiC(s)) = 0. Since

uij’s are bounded numbers, sEk(s) → 0 as s → 0. Hence, from the Final Value

Theorem, limt→∞ ē(t) = lims→0 sĒ(s) = 0. This proves the first statement of the

theorem.

Now we consider the case of H(s)K(s) having only one integrator. We can rep-

resent H(s)K(s) as C(s)/s where C(s) doesn’t have poles or zeros at the origin

and C(0) > 0 (theorem 7.3.1). Since Xo(s) = vo/s
2, we have

sĒ(s) = UsΨ(s)
vo

s2
UTφ1 = UQ(s)UTφ1,

where Q(s) is defined as

Q(s) :=









vo

s+λminC(s)

. . .

vo

s+λmaxC(s)









.

Hence, once again from the Final Value Theorem,

lim
t→∞

ē(t) = lim
s→0

sĒ(s) = UQ(0)U ′φ1 := e∞,

which is a constant vector. Thus the steady state error converges to a constant

vector.

To prove that e∞ grows unbounded with N , note that

||ē∞||22 = φT
1UQ(0)TQ(0)UTφ1. (7.16)
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Since UTφ1 is the first row of U and Q(0) is a real diagonal matrix, we can reduce

(7.16) to

||ē∞||2 =

(
N∑

i=1

(
vo

λiC(0)

)2

u2
1i

)1/2

>
vo

λminC(0)
|u11|.

From lemma 7.3.1, we have 1/λmin > N2/π2 and |u11| > 1/N1/2. Using these in

the above, we get ||ē∞||2 > γN3/2, where γ = vo/C(0)π2. Since this lower bound

is an increasing function of N , the second part of the theorem follows immediately.

The following technical result will be needed for the proof of Theorem 7.3.3.

Lemma 7.5.1. Let C(s) be a SISO transfer function that has no poles or zeros at

the origin and C(0) > 0. Then, ∃β ∈ (0,+∞) and ∃No ∈ N such that ∀N > No,

sup
ω

∣
∣
∣
∣
∣

1

1− λmin(N)C(jω)
ω2

∣
∣
∣
∣
∣
> βN.

where λmin(N) is the smallest eigenvalue of the matrix L ∈ RN×N defined in

(7.10). �

Proof of Lemma 7.5.1. First we will establish that |C(jω)−C(0)| < ωγ for some

positive constant γ when ω is small enough. Let C(s) = Nc(s)/Dc(s), where Nc(s)

and Dc(s) are coprime polynomials in s (with real coefficients) with degrees m

and n, respectively. We write down

C(s) =
Nc(s)

Dc(s)
=
zms

m + · · ·+ z1s+ zo

pnsn + · · ·+ p1s+ po

where zo and po are non-zero since C(s) does not have poles or zeros at the origin.

Expanding the expression for C(s)− C(0) and doing a little algebra, we see that

C(s)− C(0) =
skQ(s)

D(s)po
,
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where Q(s) is a polynomial in s with a non-zero constant term and k ≥ 1. Since

Q(s) and D(s) both have non-zero constant terms, limω→0
Q(jω)

D(jω)po
= Q(0)

D(0)po
6= 0.

Therefore, ∃ ωo s.t. if |ω| < ωo, then | Q(jω)
D(jω)po

| < | Q(0)
D(0)po

| + 1 =: γ. Therefore we

get that there exist ωo > 0, γ > 0 and an integer k ≥ 1 s.t., ∀ |ω| < min(1, ωo),

|C(jω)− C(0)| ≤ |ωk|γ ≤ |ω|γ. (7.17)

Define

f(ω) =

∣
∣
∣
∣
∣

1

1− λmin(N)C(jω)
ω2

∣
∣
∣
∣
∣
.

Pick No such that ω∗ :=
√

λmin(N)C(0) ∈ (0,min(1, ωo)), ∀N > No. Hence,

f(ω∗) =
1

|1− C(jω∗)
C(0)
|

=
C(0)

|C(jω∗)− C(0)| > C(0)/γω∗.

The last inequality follows from (7.17). Substituting the value of ω∗, we get

f(ω∗) >
C(0)1/2

γλ
1/2
min

, ∀N > No. (7.18)

From lemma 7.3.1, we know that 1/λmin(N) ≥ N2/π2. Using this in the inequality

(7.18), we get

f(ω∗) > βN, ∀N > No (7.19)

where β := (C(0)/γ2π2)1/2 is a positive constant. This proves the lemma.

Now we are ready to prove Theorem 7.3.3.

Proof of Theorem 7.3.3. Since H(s)K(s) has two integrators, H(s)K(s) can be

written as C(s)/s2. From theorem 7.3.1, it follows that C(s) cannot have poles

or zeros at 0 and C(0) > 0. From (7.13), we get

||Gxoe(s)||2 =
√

G∗
xoeGxoe =

√

φT
1 UΨ∗(s)Ψ(s)UTφ1.
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Since the vector UTφ1 is the first row of U , using (7.14), this reduces to

||Gxoe(s)||2 =

(
N∑

i=1

u2
1i

∣
∣
∣
∣

1

1 + λiH(s)K(s)

∣
∣
∣
∣

2
)1/2

(7.20)

The H∞ norm of the transfer function vector Gxoe is:

||Gxoe||∞ = sup
ω
||Gxoe(jω)||2. (7.21)

Thus,

||Gxoe||∞ > sup
ω

(∣
∣
∣
∣

1

1 + λminH(jω)K(jω)

∣
∣
∣
∣
|u11|

)

, (7.22)

We can now apply the result established in lemma 7.5.1 to claim that ∃β ∈

(0,+∞) and ∃No ∈ N such that

sup
ω

∣
∣
∣
∣

1

1 + λmin(N)H(jω)K(jω)

∣
∣
∣
∣
> βN ∀N > No.

From lemma 7.3.1, we know that |u11| > 1/
√
N . Using these two inequalities in

(7.22), we get

||Gxoe||∞ > βN1/2 ∀N > No.

Since this lower bound grows unbounded as N increases, the result follows imme-

diately.

Proof of Theorem 7.3.5. When K(s) has no integrators, and HK has k integra-

tors, where k is either one or two, H must of the form H(s) = H1(s)/s
k with

H1(0) > 0. From (7.9) and using L = MTM , we get

Gde(s) = H(s)[I +H(s)K(s)MTM ]−1MT = H(s)sk[M−T sk + C(s)M ]−1 (7.23)

Therefore,

‖Gde(0)‖ =
H1(0)

C(0)
M−1 ⇒ ‖Gde(0)‖ =

H1(0)

C(0)
N,
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since

M−1 =












1 1 . . . 1

0 1 . . . 1

... . . .
. . .

...

0 . . . 0 1












∈ R
N×N ,

whose 2-norm is N . This implies ‖Gde‖∞ = supω ‖Gde(jω)‖ ≥ ‖Gde(0)‖ ≥ cN for

some constant c independent of N . This proves the statement.
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Chapter 8

Control of vehicular platoons:

asymmetric bidirectional control

8.1 Introduction

In this chapter we revisit the problem examined in the previous chapter - that

of decentralized control of a string of vehicles moving in a straight line in order

to maintain constant inter-vehicular separation. In the general bidirectional case,

there is no reason for a vehicle’s controller to put equal weights on the front spacing

error (i.e., the error w.r.t. to the preceding vehicle’s relative position) and back

spacing error (i.e., the error w.r.t. to the following vehicle’s relative position).

Moreover, the controllers in one vehicle should be allowed to be different from

those in other vehicles. The difficulty of this general problem is, however, that we

are faced with the task of designing 2N controllers when there are N vehicles.

Due to the challenging nature of this problem, we resort to a continuum ap-

proximation of the platoon dynamics in the form of a partial differential equa-
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tion(PDE). The continuum approximation turns out to be quite useful in pro-

viding insight into the problem, which led to the improved, “mistuning”-based,

design described in this chapter. Although the continuum approximation is made

under the assumption of large number of vehicles, the resulting design and analysis

show that the benefits are tangible even for small number of vehicles.

Chapter organization: We start with a summary of the results in Section 8.2

and state the problem in Section 8.3 in formal terms. Unlike some of the previous

chapters, we do not have a “results” section, since we need to describe the PDE

model of the platoon dynamics in order to state the results. Section 8.4 describes

the derivation of the PDE model. In section 8.5 the PDE is analyzed to explain the

loss of stability with increasing number of vehicles, and section 8.6 describes how

to ameliorate such loss of stability by mistuning. Section 8.7 reports time-domain

simulation results that show the benefit of mistuing.

8.2 Contributions and prior work

The contributions of the work reported in this chapter are briefly summarized

below.

1. In order to facilitate the analysis, we derive a linear partial differential equa-

tion (PDE) based continuous analogue of the (spatially) discrete platoon

dynamics. The PDE model is inspired by the extensive literature on PDE

based models of traffic dynamic (see the review [162] and references therein,

and the PDE model of a string of vehicles considered in [163]). However,

a PDE based model of a controller platoon is a novel contribution of our

work.
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2. The PDE model is used to derive a controller independent conclusion on sta-

bility with symmetric bi-directional architecture. In particular, the behavior

of the least stable eigenvalue of the discrete platoon dynamics is predicted by

analyzing the PDE spectra. We show that the least stable closed-loop eigen-

value approaches zero as O( 1
N2 ). This prediction is confirmed by numerical

computation.

3. We show that an arbitrary small perturbation (asymmetry) in the controller

gains from their nominal (symmetric) values can improve the closed-loop

damping such that the least stable eigenvalue now approaches 0 only as

O( 1
N

). Numerical computations of eigenvalues in discrete platoons is used

to validate these results.

Perhaps more important than the improvement itself is the intuition into the

problem that the PDE provides, which made the improvement possible in

the first place. The PDE reveals, better than the discrete state-space equa-

tion does, the underlying cause of progressive loss of stability with a sym-

metric bidirectional architecture and suggests a mistuning-based approach

to improve the stability margin by introducing asymmetry. In particular,

forward-backward asymmetry in the control is seen to be beneficial. The

asymmetry refers to the assignment of controller gains such that a vehicle

utilizes information from the preceding and following vehicles differently.

We also show how to achieve the best improvement in closed-loop stability

by exploiting this asymmetry.

Prior work: Prior work on the control of vehicular platoons has been re-

viewed in the previous chapter; see Section 7.2.1. The idea of using non-identical

controllers to improve robustness to disturbance of the closed loop platoon has

255



. .  . . .  .

PSfrag replacements

Z0(t)Zi(t)
ZN+1(t)

i 1N

0

2π

yi

yi−1

yi+1

∆

e
(f)
i

e
(b)
i

(a) A platoon with fictitious lead and follow

vehicles.

. .  .. .  .

PSfrag replacements

Z0(t)

Zi(t)

ZN+1(t)

i

1

N

0 2π

yi
yi−1

yi+1

∆∆
e
(f)
ie

(b)
i

(b) Same platoon in y co-

ordinates.

Figure 8.1. A platoon with N vehicles moving in one dimension.

been considered in [164]. However, in the design proposed in [164], the controller

gains at individual vehicles grow without bound as N increases. In contrast, the

mistuning based design proposed in this chapter keeps controller gains uniformly

bounded within any prescribed value, independent of the number of vehicles. The

role of asymmetry in the interconnection architecture on improving closed loop

stability is novel.

PDE modeling of traffic flow is quite well developed, see [162] and references

therein for a thorough review of this topic. We note that the mistuning based

approaches have been used for stability augmentation in many structural appli-

cations; see [165–168] for some recent references.

8.3 Problem statement

Consider a platoon of N identical vehicles moving in a straight line as shown

schematically in Figure 8.1(a). For these vehicles, we consider the following two

scenarios as tabulated in Table 8.1. In scenario I, we introduce (after [158, 169])

a fictitious lead vehicle and a fictitious follow vehicle, indexed as 0 and N + 1

respectively. Their behavior is specified by imposing a constant velocity trajecto-
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ries as Z0(t) = Vdt and ZN+1 = Vdt − (N + 1)∆. In scenario II, only a fictitious

lead vehicle with index i = 0 with Z0(t) = Vdt is introduced. For the last vehicle

in the platoon in scenario II, there is no follower vehicle and it uses information

only from its predecessor to maintain a constant gap.

For the ease of analysis and design, we take the following simplifying assump-

tions:

1. Every vehicle is a fully actuated point mass without damping (i.e., a double

integrator)

2. Every vehicle employs a static gain feedback control law.

These simplifications are done for ease of analysis only; the results are seen to be

valid more generally. Let Zi(t) and Vi(t) denote the position and the velocity, re-

spectively, of the ith vehicle for i = 1, 2, . . . , N . Since the inter-connected platoon

dynamics are of primary interest, a simple double integrator is used to model the

essential dynamics of an individual vehicle:

Z̈i = Ui,

where Ui is the control (engine torque) applied on the ith vehicle. Formally, such

a model arises after the velocity dependent drag and other non-linear terms have

been eliminated by using feedback linearization [145, 146]. The control objective

is to maintain a constant inter-vehicular distance ∆ and a constant velocity Vd

for every vehicle.

To facilitate the analysis, consider a co-ordinate change

yi = 2π(
Zi(t)− Vdt+ L

L
), vi = 2π

Vi − Vd

L
, (8.1)
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Scenario Length L Leader Follower

I (N + 1)∆ ṽ0 = 0 ṽN+1 = 0

II N∆ ṽ0 = 0 –

Table 8.1. The two scenarios – one with a fictitious lead vehicle, the other with

fictitious lead and follow vehicles.

where L denotes the platoon length, which equals (N + 1)∆ in scenario I and

N∆ in scenario II. Figure 8.1(b) depicts the schematic of the platoon in the new

co-ordinates. The normalization ensures that y0(t) ≡ 2π, yi(t) ∈ [0, 2π], and

yN+1(t) ≡ 0 (yN(t) = 0) in scenario I (II). Here, we have implicitly assumed

that deviations of the vehicle positions and velocities from their desired values are

small.

In the normalized co-ordinate, the dynamics of the ith vehicle is described by

ÿi = ui,

where ui := 2πUi/L. The desired spacing and velocities are

δ :=
∆

L/2π
, vd :=

Vd − Vd

L/2π
= 0,

and the desired position of the ith vehicle is

yd
i (t) ≡ 2π − iδ. (8.2)

The position and velocity errors for the ith vehicle in the y co-ordinate are:

ỹi(t) = yi(t)− yd
i (t), ṽi = vi − vd = vi.

We note that ṽ0 = ṽN+1 = 0 for the fictitious lead and follow vehicles.
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For the purposes of control, it is useful to introduce the front and back relative

(position) errors for the ith vehicle:

e
(f)
i =

Zi−1 − Zi −∆

L/2π
= yi−1 − yi − δ,

e
(b)
i =

Zi − Zi+1 −∆

L/2π
= yi − yi+1 − δ, for i = {1, . . . , N}.

The quantity e
(f)
i denotes the front relative position error between the ith and

its predecessor (i − 1) vehicle, and e
(b)
i denotes the back relative position error

between the ith and its follower (i + 1) vehicle. The relative errors, including the

velocity error, can be obtained in practice by on-board devices such as radars, GPS

and speed sensors. Consistent with the decentralized bidirectional linear control

architecture, the control ui for the ith vehicle is assumed to depend only on 1) its

velocity ṽi, and 2) the relative position errors between itself and its immediate

neighbors. That is,

ui = k
(f)
i e

(f)
i − k(b)

i e
(b)
i − bi ṽi, (8.3)

where k
(·)
i , bi are positive constants. The first two terms are used to compensate

for any deviation away from nominal with the predecessor and the follower ve-

hicles respectively. The third term is used to obtain a zero steady-state error in

velocity. In principle, relative velocity errors between neighboring vehicles can

also be incorporated into the control, but we do not examine this situation here.

Equation (8.3) represents control using state feedback, albeit only with local

(nearest neighbor) information. Analysis of this controller structure is relevant

even if there are additional dynamic elements in the controller. First, a dynamic

controller cannot be allowed to have a zero at the origin. The reason is that for a

constant velocity reference, such a pole-zero cancellation will lead to steady-state

errors that grow without bound as N increases (see Theorem 7.3.2 in the previous
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chapter). Second, a dynamic controller cannot have an integrator either. For if

it does, the closed-loop platoon dynamics become unstable for a sufficiently large

value of N(see Theorem 7.3.1). As a result, any allowable dynamic compensator

must essentially act as a static gain at low frequencies. Furthermore, the results

of [160] indicate that the principal challenge in controlling large platoons arises

from the double integrator with its unbounded gain and large negative phase at

low frequencies (see Section 7.3.5). Hence, the limitation and its amelioration

discussed here only with the local state feedback of (8.3) is also relevant to the

case where additional dynamic elements appear in the control.

To describe the closed-loop dynamics of the platoon, define

ỹ := [ỹ1, ỹ2, . . . , ỹN ]T ,

ṽ := [ṽ1, . . . , ṽN ]T .

For scenario I with fictitious lead and follow vehicles, the control law (8.3) yields

the following closed loop dynamics.






˙̃y

˙̃v




 =






0 I

−K(f)
I MT −K(b)

I M −B






︸ ︷︷ ︸

AL−F






ỹ

ṽ




 (8.4)

whereK
(f)
I = diag(k

(f)
1 , k

(f)
2 , . . . , k

(f)
N ), K

(b)
I = diag(k

(b)
1 , k

(b)
2 , . . . , k

(b)
N ), B = diag(b1, b2, . . . , bN )

and

M =





1 −1 0 ...
0 1 −1
...

... 0
1 −1

... 0 1



 .

For scenario II with a fictitious lead vehicle and no follow vehicle, the closed loop

260



dynamics are





˙̃y

˙̃v




 =






0 I

−K(f)
II M

T −K(b)
II Mo −B






︸ ︷︷ ︸

AL






ỹ

ṽ




 (8.5)

where K
(f)
II = K

(f)
I , K

(b)
II = diag(k

(b)
1 , k

(b)
2 , . . . , k

(b)
N−1, 0), and

Mo =





1 −1 0 ...
0 1 −1
...

... 0
1 −1

... 0 0



 .

Our goal is to understand the progressive loss of closed loop stability with

increasing N and to devise ways to ameliorate such a loss by appropriately choos-

ing the controller gains. While in principle this can be done by analyzing the

eigenvalues of the matrix AL−F (scenario I) and of AL (scenario II), we take an

alternate route. When the number of vehicles N is large, we approximate the

dynamics of the discrete platoon by a partial differential equation (PDE) which

is used for analysis and control design.

8.4 Continuous model of an automated platoon

In this section, we develop a continuous PDE approximation of the (spatially)

discrete platoon dynamics with bidirectional control. The PDE is derived with

respect to a normalized spatial co-ordinate x ∈ [0, 2π]. We recall that the nor-

malized location of the ith vehicle (denoted as yi) too was defined with respect

to this co-ordinate system. In effect, the two symbols x and y correspond to the

same co-ordinate representation but are used here to distinguish the continuous

and discrete formulations.

With respect to the normalized co-ordinate, every car is nominally assumed to
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lie within an interval of length δ (see Fig. 8.1(b)). For the purposes of continuous

approximation, we smear each vehicle over its interval to get a constant mean

density

ρ0 ≈
N

2π
=

1

δ
(8.6)

for N vehicles in the platoon. Dynamics of the individual vehicles in the pla-

toon create perturbations in the density, with the local density ρ(x, t) increasing

(decreasing) as the cars move closer (apart). The starting point of macroscopic

continuous models of traffic flow thus is the continuity equation, which relates

the density ρ(x, t) (vehicles per unit characteristic length) at spatial co-ordinate

x ∈ [0, 2π] and time t ∈ [0,∞) with the velocity v(x, t):

∂ρ

∂t
+
∂(ρv)

∂x
= 0.

In order to analyze small perturbations about the mean, we define the per-

turbed quantities ρ̃, ṽ by the relations

ρ(x, t) = ρ0 + ρ̃(x, t), v(x, t) = 0 + ṽ(x, t),

where the mean velocity is zero because of our choice of the co-ordinate system

(see (8.1)). Even though v and ṽ are the same, we use ṽ to draw attention to

the fact that the velocity is a small perturbation of the mean value. For such

perturbations, the linearized continuity equation is given by

∂ρ̃

∂t
+ ρ0

∂ṽ

∂x
= 0 ⇒ ∂ṽ

∂x
= − 1

ρ0

∂ρ̃

∂t
(8.7)

This equation is consistent with the physical intuition whereby a positive gradient

in velocity (due to say the predecessor speeding up or the follower slowing down)

will cause the local density to decrease. In order to study density perturbations,
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one thus needs to specify the velocity which here arises due to the linearized

momentum balance:

∂v

∂t
= F (x, t)⇒ ∂ṽ

∂t
= u(x, t), (8.8)

where F (x, t) is the acceleration due to control u(x, t) and possibly disturbance.

Here, we focus only on the control. Since we are in the moving coordinate frame,

the momentum equation has the partial derivative rather than the usual total

derivative on the left hand side. Using (8.3), the control for the ith vehicle in the

platoon is of the form:

ui(t) = u
(pf)
i (t)− u(pb)

i (t)
︸ ︷︷ ︸

u
(p)
i (t)

+u
(v)
i (t),

where

u
(pf)
i (t) := k

(f)
i (yi−1(t)− yi(t)− δ), u

(pb)
i (t) := k

(b)
i (yi(t)− yi+1(t)− δ),

are the position dependent f ront and back control terms, and,

u
(v)
i (t) := −bṽi(t). (8.9)

Corresponding to this discrete control law, we derive a continuous approximation

u(x, t) = u(pf)(x, t)− u(pb)(x, t)
︸ ︷︷ ︸

u(p)(x,t)

+u(v)(x, t), (8.10)

such that u(pf)(yi, t) = u
(pf)
i (t), u(pb)(yi, t) = u

(pb)
i (t), and u(v)(yi, t) = u

(v)
i (t). Now,

u
(pf)
i = k

(f)
i (yi−1 − yi − δ) = k

(f)
i (1− δ

yi−1 − yi
)(yi−1 − yi)

≈
∫ yi−1

yi

kpf(x)(1−
ρ(x)

ρ0

)dx,

where the approximation is obtained by smearing the control action over the

interval [yi, yi−1] and substituting kf(x) for the discrete control gain k
(f)
i . Since
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ρ = ρ0 + ρ̃, we have

u
(pf)
i (t) ≈ − 1

ρ0

∫ yi−1

yi

kf(x)ρ̃(x, t)dx = − 1

ρ0
[kf ρ̃](x

+, t)δ,

by the Mean Value Theorem, where x+ ∈ [yi, yi−1]. Since u
(pf)
i (t) = u(pf)(yi, t)

and δ = 1/ρ0 (see (8.6)), we take

u(pf)(x, t) = − 1

ρ2
0

[kf ρ̃](x
+, t), and u(pb)(x, t) = − 1

ρ2
0

[kb ρ̃](x
−, t),

where x+ ∈ [yi, yi−1] and x− ∈ [yi+1, yi]. Using (8.10), we have

u(p)(x, t) = u(pf)(x, t)− u(pb)(x, t)

= − 1

ρ2
0

(
[kf ρ̃](x

+, t)− [kb ρ̃](x
−, t)

)
.

In order to specify the control, one thus needs to approximate the terms on the

right hand side as functions of (x, t). For a small perturbation about a nominally

symmetric bi-directional architecture, a valid approximation is obtained by taking

x+ − x− ≈ δ which yields

u(p)(x, t) ≈ − 1

ρ2
0

[

[k(−)
p ρ̃](x, t) +

δ

2

∂[k(+)ρ̃]

∂x
(x, t)

]

= − 1

ρ2
0

k(−)ρ̃− 1

2ρ3
0

∂

∂x
(k(+)ρ̃), (8.11)

where

k(+) := kf(x) + kb(x), k(−) := kf (x)− kb(x). (8.12)

The velocity feedback term in (8.9) has a continuous counterpart

u(v)(x, t) = −b(x)ṽ(x, t). (8.13)

With the feedback control u(x, t) = u(p)(x, t) + u(v)(x, t), where u(p)(x, t) and

u(v)(x, t) are given by (8.11) and (8.13), the linearized momentum equation (8.8)

becomes

∂ṽ

∂t
= −

[
1

ρ2
0

k(−)ρ̃+
1

2ρ3
0

∂

∂x
(ρ̃k(+)) + bṽ

]

.
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Upon differentiating both sides with respect to t and using the continuity equa-

tion (8.7) we obtain the PDE that describes small velocity perturbations ṽ due to

the inter-connected platoon dynamics:

(
∂2

∂t2
+ b

∂

∂t

)

ṽ =
1

ρ0
(k(−)

p

∂ṽ

∂x
) +

1

2ρ2
0

∂

∂x
(k(+)

p

∂ṽ

∂x
) (8.14)

The boundary conditions for the PDE depend upon the dynamics of the first

and the last vehicles in the platoon. For scenario I with a constant velocity ficti-

tious and lead vehicles, the appropriate boundary conditions are of the Dirichlet

type on both ends:

ṽ(0, t) = ṽ(2π, t) = 0. ∀t ∈ [0,∞) (8.15)

For scenario II with the only a fictitious lead vehicle, the appropriate boundary

conditions are of Neumann-Dirichlet type:

∂ṽ

∂x
(0, t) = ṽ(2π, t) = 0. ∀t ∈ [0,∞) (8.16)

8.4.1 Eigenvalue comparison

For preliminary validation purposes, we consider the simplest case where the

position control gains are constant for every vehicle, i.e., kf(x) = kb(x) = k0 and

b(x) = b0. In such a case k(−)(x) ≡ 0, k(+)(x) ≡ 2k0 and the governing PDE (8.14)

simplifies to

(
∂2

∂t2
+ b0

∂

∂t
− k0

ρ2
0

∂2

∂x2

)

ṽ = 0 (8.17)

Note that this is a damped wave equation with a wave speed of
√

k0

ρ0
. The wave

equation is consistent with the physical intuition that a symmetric bidirectional

control architecture causes a disturbance to propagated equally in both directions.
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Figure 8.2 compares the closed loop eigenvalues of a discrete platoon with

N = 25 vehicles and the PDE (8.17). The eigenvalues of the platoon are obtained

by numerically evaluating the eigenvalues of the matrices AL−F and AL (defined in

(8.4) and (8.5)). The eigenvalues of the PDE are also computed numerically after

using a Galerkin method [170]. The figure shows that the two sets of eigenvalues

are in good match. In particular, the least stable eigenvalues are well-captured

by the PDE. Additional validation appears in the following sections, where we

present and compare results for analysis and control design.

8.5 Loss of stability margin with symmetric bidi-

rectional control

In this section, we analyze the stability of a discrete platoon by evaluating the

eigenvalues of the PDE

(
∂2

∂t2
+ b0

∂

∂t
− a2

0

∂2

∂x2

)

ṽ = 0, (8.18)

where x ∈ [0, 2π], ρ0 = N
2π

is the mean density and

a2
0 :=

k0

ρ2
0

(8.19)

is the wave speed. The PDE corresponds to the platoon with symmetric and

constant control gains: kf(x) = kb(x) ≡ k0 and b(x) ≡ b0. On taking the Laplace

transform, one obtains the characteristic equation

s2 + b0s− a2
0λ = 0, (8.20)

where λ is an eigenvalue of the Laplacian, i.e.,

d2η

dx2
= λη(x), (8.21)
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Figure 8.2. Comparison of closed loop eigenvalues of the platoon dynamics and the

spectrum of the corresponding PDE (8.18) for the two different scenarios: (a) pla-

toon with fictitious lead and follow vehicles, and correspondingly the PDE (8.18)

with Dirichlet boundary conditions, (b) platoon with fictitious lead vehicle, and

correspondingly the PDE (8.18) with Neumann-Dirichlet boundary conditions.

For ease of comparison, only a few of the eigenvalues are shown. Both plots are

for N = 25 vehicles; the controller parameters are k
(f)
i = k

(b)
i = 1 and bi = 0.5 for

i = 1, 2, . . . , N , and for the PDE kf(x) ≡ 1 and b(x) ≡ 0.5.
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boundary condition eigenvalue λl eigenfunction ψl(x) l

η(0) = η(2π) = 0
(Dirichlet - Dirich-
let)

− l2

4
sin( lx

2
) l = 1, 2, . . .

∂η
∂x

(0) = η(2π) = 0
(Neumann - Dirich-
let)

− (2l−1)2

16
cos( (2l−1)x

4
) l = 1, 2, . . .

Table 8.2. The eigen-solutions for the Laplacian with two different boundary con-

ditions.

and η is an eigenfunction satisfying appropriate boundary conditions – (8.15) for

scenario I and (8.16) for scenario II. The eigen-solutions for the two scenarios are

given by the following simple Lemma.

Lemma 8.5.1. Consider the eigenvalue problem (8.21) for the Laplacian with

boundary conditions (8.15) and (8.16) corresponding to the scenarios I and II

respectively. The eigenvalues and the eigenfunctions for the two scenarios are

given in the Table 8.2. The eigenfunctions for either scenario provide a basis of

L2([0, 2π]). �

Proof. It is a simple calculation to verify that the eigenvalues and eigenfunctions

given in the table satisfy the eigenvalue problem. Any eigenfunctions of the Lapla-

cian on [0, 2π] are known to provide a basis for L2([0, 2π]) [171].

To see the effect of N on stability, we evaluate the eigenvalues (roots of the

characteristic equation (8.20)) for the Dirichlet boundary conditions (scenario I).

Using Table 8.2, the lth eigenvalue is given by

s±l =
−b0 ±

√

b20 − a2
0l

2

2
, (8.22)
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Figure 8.3. A schematic explaining the loss of stability as N increases and how

mistuning ameliorates this loss.

where l = 1, 2, . . .. The real part of the eigenvalue depends upon the discriminant

D(l, N) = (b20 − a2
0l

2), where the wave speed a0 depends both on control gain k0

and number of vehicles N (see (8.19)). For a fixed control gain, there are two

cases to consider:

1. If D(l, N) < 0, the roots s±l are complex with the real part given by −b0,

2. If D(l, N) > 0, the roots s±l are real with s+
l + s−l = −2b0.

In the former case, the damping is determined by the velocity feedback term b0
∂
∂t

,

while in the latter case one eigenvalue (s−l ) gains damping at the expense of the

other (s+
l ) which looses damping. When s±l are real, the eigenvalue s+

l is closer

to the origin than s−l ; so we call s+
l the lth less-stable eigenvalue. The following

lemma gives the dependence of this eigenvalue on the number of vehicles N .

Lemma 8.5.2. Consider the eigenvalue problem for the linear PDE (8.18) with

boundary conditions (8.15) and (8.16), corresponding to scenarios I and II respec-
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boundary condition s+
l for l � lc lc

Dirichlet-Dirichlet −π2k0

b0
l2

N2 +O( 1
N4 )

b0N
2π

√
k0

Neumann-Dirichlet −π2k0

4b0
l2

N2 +O( 1
N4 )

b0N
2π

√
k0

Table 8.3. the trend of the less stable eigenvalue s+
l for the PDE (8.18)

tively. The lth less-stable eigenvalue s+
l approaches 0 as O(1/N 2) in the limit as

N →∞. The asymptotic formulas appear in Table 8.3. �

Proof. We first consider scenario I with Dirichlet boundary conditions (8.15). Us-

ing (8.22) and (8.19),

2s±l = −b0 ± b0
(

1− a2
0l

2

b20

)1/2

= −b0 ± b0
(

1− 2π2k0

b20

l2

N2

)

+O(
1

N4
)

for a2
0l

2/b20 � 1. The asymptotic formula holds for wave numbers

l <<
b0
a0

=
b0N

2π
√
k0

=: lc, (8.23)

and in particular for each l as N → ∞. The proof for the scenario II with

Neumann-Dirichlet boundary conditions (8.16) follows similarly.

Figure 8.3(a) graphically illustrates the destabilization by depicting the move-

ment of eigenvalues s±1 as N increases. For sufficiently small values of N , the

discriminant D(1, N) is negative and the eigenvalue s±1 are complex. The real

part of the eigenvalue depends only on the value of b0. At a critical value of

N = Nc := π
√

2k0

b0
, the discriminant becomes zero, s+

1 = s−1 and the eigenvalues

collide on the real axis. For values of N > Nc and in particular as N → ∞, the

eigenvalue s+
1 asymptotes to 0 while staying real, and s−1 asymptotes to −b. Their

cumulative damping, as reflected in the sum s+
l + s−l = −2b0, is conserved. In
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other words, s+
1 is destabilized at the expense of s−1 . The Lemma shows that the

least stable eigenvalue admits an asymptotic expansion

s+
1 = −π

2k0

b0

1

N2
+O(

1

N4
) (Dirichlet-Dirichlet) (8.24)

= −π
2k0

4b0

1

N2
+O(

1

N4
) (Neumann-Dirichlet) (8.25)

asN →∞. Therefore, for large values ofN , the least-stable eigenvalue asymptotes

to zero as O(1/N 2).

Finally, we present numerical computations that corroborates this PDE-based

analysis. Figure 8.4 plots as a function of N the least stable eigenvalue of the

PDE and of the discrete platoon as well as the prediction from the asymptotic

formula. The eigenvalues for the discrete platoon are obtained by numerically

evaluating the eigenvalues of the matrices AL−F and AL (see (8.4) and (8.5)) with

constant control gains k
(f)
i = k

(b)
i = k0 = 1 and bi = b0 = 0.5 for i = 1, . . . , N .

The comparison shows that the PDE analysis closely matches the eigenvalue of

the discrete platoon.

Remark 8.5.1. : The preceding analysis shows that the loss of stability experienced

with a symmetric bidirectional architecture is controller independent. The least

stable eigenvalue approaches 0 as O(1/N 2) irrespective of the values of the gains

k0 and b0, as long as they are fixed constants independent of N . Equations (8.24)

and (8.25) also imply that for the least stable eigenvalue to be uniformly bounded

away from 0, one has to increase the control gain k0 as N2. This is consistent

with the conclusion of Jovanović et. al., who studied the LQR control problem of

a platoon on a circle [158].

Remark 8.5.2. : The result of Lemma 8.5.2 also indicates that the platoon with

both a fictitious leader and a follower (scenario I) has a higher stability margin

than platoon with only a fictitious leader (scenario II). We note, however, that in
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Figure 8.4. Comparison of the least stable eigenvalue of the closed loop pla-

toon dynamics and that predicted by Lemma 8.5.2 with symmetric bidirectional

control. In the plot legends, “D-D” stands for “Dirichlet-Dirichlet”, “N-D” for

“Neumann-Dirichlet”, “L-F” for fictitious leader-follower, and “L” for fictitious

leader. The plot for “PDE (8.18), D-D” should be compared with “platoon, L-F”

since they both correspond to scenario I. Similarly, “PDE (8.18), N-D” and “pla-

toon, L-F” correspond to scenario II. Note that the predictions (8.24) and (8.25)

are valid for 1 << lc (defined in (8.23)), which in this case means for N >> 12.
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scenario I, the absolute position of the fictitious follow vehicle must be provided

to the last vehicle in the platoon. Therefore scenario I requires one extra piece of

global information as compared to the scenario II. The result provides a numerical

measure of the benefit of this extra information – a factor of 4 improvement in

the closed-loop damping.

8.6 Reducing loss of stability by mistuning

With symmetric bidirectional control, k
(−)
p (x) ≡ 0, so the only term left in

the right hand side of the governing PDE (8.14) is a O( 1
N2 ) term. This explains

the decay of the least stable eigenvalue as 1/N 2. Any amount of asymmetry

between the front and the back gain functions kf(s) and kb(x) will make k
(−)
p (x)

not identically zero, so the right hand side will contain a O( 1
N

) term. This gives

us hope that the least stable eigenvalue might decay less slowly in the presence of

such asymmetry, no matter how small. We will now show that this is indeed the

case, and determine the gain profiles that achieves this slower rate of decay.

We consider the eigenvalue problem for the PDE (8.14) where the control

gains are designed (mistuned) with the objective of minimizing the least-stable

eigenvalue s+
1 . In particular, we consider forward and backward position feedback

gain profiles:

kf(x) = k0 + εka
f(x),

kb(x) = k0 + εka
b (x),

where ε > 0 is a small parameter signifying the amount of mistuning and ka
f (x),
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ka
b (x) denote the perturbation profiles. Define

ks(x) := ka
f(x) + ka

b (x),

km(x) := ka
f(x)− ka

b (x),

so that from (8.12),

k(+)
p (x) = 2k0 + εks(x),

k(−)
p (x) = εkm(x).

The mistuned version of the PDE (8.14) is then given by

∂2ṽ

∂t2
+ b0

∂ṽ

∂t
= L(ε)ṽ, (8.26)

where

L(ε)ṽ := a2
0

∂2ṽ

∂x2
+ ε

[
km

ρ0

∂ṽ

∂x
+

1

2ρ2
0

∂

∂x
(ks

∂ṽ

∂x
)

]

(8.27)

In the remainder of this chapter, we study the problem of optimizing the stability

margins by judicious choice of km(x) and ks(x). In effect, the results of our

investigation, carried out in the following two sections using perturbation and

optimization methods, provide a systematic framework for designing control gains

in the discrete platoon.

8.6.1 Perturbation analysis

The control objective is to design mistuning profiles km(x) and ks(x) to min-

imize the least stable eigenvalue s+
1 . To achieve this, we first use a perturbation

method, borrowed from [168], to obtain an explicit asymptotic formula for the

eigenvalues.
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Theorem 8.6.1. Consider the eigenvalue problem for the mistuned PDE (8.26)

with Dirichlet boundary condition (8.15) corresponding to scenario I. The lth

eigenvalue pair is given by the asymptotic formula

s+
l (ε) = ε

l

2b0N

∫ 2π

0

km(x) sin(lx)dx +O(ε2) +O(
1

N2
),

s−l (ε) = −2b0 − ε
l

2b0N

∫ 2π

0

km(x) sin(lx)dx +O(ε2) +O(
1

N2
),

that is valid for each l in the limit as ε→ 0 and N →∞. �

The perturbation formula is useful because it suggests the most beneficial

mistuning profile km(x) in the limit ε → 0, which is summarized in the next

corollary.

Corollary 8.6.1. Consider the problem of minimizing the least-stable eigenvalue

of the PDE (8.26) with Dirichlet boundary condition (8.15) by choosing a function

km(x) ∈ L2([0, 2π]) with norm-constraint
∫ 2π

0
|km(x)|2dx = 1. In the limit as

ε → 0, the optimal mistuning profile is given by km(x) = − sin(x)√
π

. With this

profile, the least stable eigenvalue is given by the asymptotic formula

s+
1 (ε) = −ε

√
π

2b0

1

N
+O(ε2) +O(

1

N2
)

in the limit as ε→ 0 and N →∞. �

This result shows that even with an arbitrarily small amount of mistuning ε,

one can improve the closed-loop platoon damping by a large amount, especially

for large values of N . The least-stable eigenvalue s+
1 asymptotes to 0 as O( 1

N
) in

the mistuned case as opposed to O( 1
N2 ) in the nominal case.

Figure 8.3(b) graphically illustrates the mechanism by which mistuning af-

fects the movement of eigenvalues s±1 as N increases. By properly choosing the
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mistuning patterns km(x) and ks(x), the damping can be exchanged between the

eigenvalues s+
1 and s−1 so that the less stable eigenvalue s+

1 “gains” stability at

the expense of the more stable eigenvalue s−1 . The net amount of damping is

preserved, since s+
1 + s−1 = 0 (as seen from Theorem 8.6.1).

Figure 8.5 presents a validation of these results by comparing the numerically

obtained mistuned and nominal eigenvalues for both the discrete platoon and the

PDE; the parameter values are indicated in the figure caption. The figure shows

that

1. the platoon eigenvalues match the PDE eigenvalues accurately over a range

of N , and

2. the mistuned eigenvalues show an order of magnitude improvement over

the nominal case even though the controller gains differ from their nominal

values only by ±10%.

For comparison, the figure also depicts the asymptotic eigenvalue formula given

in Corollary 8.6.1. Similar results are also obtained for scenario II, which are

summarized by the next theorem.

Theorem 8.6.2. Consider the eigenvalue problem for the mistuned PDE (8.26)

with Neumann-Dirichlet boundary condition (8.16) corresponding to scenario II.

The lth eigenvalue pair is given by the asymptotic formula

s+
l (ε) = −ε l

4b0N

∫ 2π

0

km(x) sin(
lx

2
)dx+O(ε2) +O(

1

N2
),

s−l (ε) = −2b0 + ε
l

4b0N

∫ 2π

0

km(x) sin(
lx

2
)dx+O(ε2) +O(

1

N2
),

that is valid for each l in the limit as ε→ 0 and N →∞. �
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Figure 8.5. The least stable eigenvalue of the closed loop platoon (i.e., of AL−F

in (8.4)) and of the PDE (8.26) with Dirichlet boundary conditions, with and

without mistuning, for a range of values of N . Parameters for the nominal case

are k0 = 1 and b0 = 0.5. In the mistuned case, forward and backward controller

gains are chosen as kf = k0 − 0.1 sin(x), kb = k0 + 0.1 sin(x) (i.e., km(x) =

− sin(x)/
√
π, ks(x) ≡ 0 and ε = 0.2

√
π). For the platoon, controller gains are

chosen by sampling the gains for the PDE as k
(f)
i = 1 − 0.1 sin(yd

i ), k
(b)
i = 1 +

0.1 sin(yd
i ), where yd

i defined in (8.2) is the desired position of the ith vehicle. The

legend “Corollary 8.6.1” refers to the prediction by Corollary 8.6.1. Note that the

prediction of Corollary 8.6.1 is plotted only for N > 16 to ensure that 1 << lc

(see (8.23)).
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As with scenario I, here again we use the above result to determine the most

beneficial profile km(x) for small ε:

Corollary 8.6.2. Consider the problem of minimizing the least-stable eigenvalue

of the PDE (8.26) with Neumann-Dirichlet boundary conditions (8.16) by choosing

a function km(x) ∈ L2([0, 2π]) with norm-constraint
∫ 2π

0
|km(x)|2dx = 1. In the

limit as ε→ 0, the optimal mistuning profile is given by km(x) = 1√
π

sin(x
2
). With

this profile, the least-stable eigenvalue is given by the asymptotic formula

s+
1 (ε) = −ε

√
π

4b0

1

N
+O(ε2) +O(

1

N2
)

in the limit as ε→ 0 and N →∞. �

Eigenvalue trends together with their validation for scenario II appear in

Fig. 8.6.

The proof of Theorem 8.6.1 is presented below. The proof of Theorem 8.6.2 is

analogous and is therefore omitted.

Proof of Theorem 8.6.1. The spatial inhomogeneity introduced by the x-dependent

coefficients km(x) and ks(x) destroy the spatial invariance of the nominal PDE (8.18).

Hence, the Fourier basis – eigenfunctions of the Laplacian – no longer lead to

a diagonalization of the mistuned PDE. The methods of section 8.5 thus need

to be suitably modified. In order to compute the eigenvalues for the mistuned

PDE (8.26), we take a Laplace transform of (8.26) and get

−a2
0

∂2η

∂x2
+ s2η + b0sη = ε

[
km

ρ0

∂η

∂x
+

1

2ρ2
0

∂

∂x
(ks

∂η

∂x
)

]

. (8.28)

We are interested in eigenvalues of (8.28) with Dirichlet boundary conditions, i.e.,

the values of s for which a solution to the homogeneous PDE (8.28) exists with
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Figure 8.6. The least stable eigenvalue of the closed loop platoon in scenario II

(i.e., of AL in (8.4)) and of the PDE (8.26) with Neumann-Dirichlet b.c., with and

without mistuning, for a range of values of N . Parameters for the nominal case are

k0 = 1, b0 = 0.5. In the mistuned case, forward and backward controller gains are

chosen as kf = k0 +0.1 sin(x
2
), kb = k0−0.1 sin(x

2
) (i.e., km = 1√

π
sin(x

2
), ks(x) ≡ 0

and ε = 0.2
√
π. For the platoon, the gains are chosen as k

(f)
i = k0 + 0.1 sin(yd

i /2)

and k
(b)
i = k0−0.1 sin(yd

i /2), where yd
i defined in (8.2) is the desired position of the

ith vehicle. The legend “Corollary 8.6.2” refers to the prediction by Corollary 8.6.2

of mistuned PDE eigenvalues.
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boundary conditions η(0) = η(2π) = 0. To obtain these eigenvalues, we use a

perturbation method expressing the eigenfunction and eigenvalue in a series form:

η(x) = η0(x) + εη1(x) +O(ε2), (8.29)

s = r0 + εr1 +O(ε2). (8.30)

We note that ε r1 denotes the perturbation to the nominal eigenvalue r0 as a result

of the mistuning. Substituting (8.30) in (8.28) and doing an O(1) balance, we get

O(1) : −a2
0(η0)xx + r2

0η0 + br0η0 = 0, (8.31)

whose eigen-solution is given by

η0 = dl sin(
lx

2
), (8.32)

r0 = s±l (0), (8.33)

where l = 1, 2, . . ., dl is an arbitrary real constant, and s±l (0) is given by (8.22).

Next,

O(ε) : −a2
0(η1)xx + (r2

0 + br0)η1 = +
km

ρ0

∂η0

∂x
+

1

2ρ2
0

∂

∂x

(

ks
∂η0

∂x

)

− (2r0r1 + b0r1)η0

:= R (8.34)

Substituting r0 = s±l (0) on the left hand side leads to a resonance condition for

the right hand side term, denoted by R. In particular for a solution η1 to exist,

R must lie in the range space of the linear operator

(

−a2
0

∂2

∂x2
+ (r2

0 + br0)

)

. (8.35)

For this self-adjoint operator, the range space is the complement of its null space

{sin( lx
2
)}. This gives the resonance condition as

1

π
< R, sin(

lx

2
) >= 0,
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where < ·, · > denotes the standard inner product in L2(0, 2π). Explicitly, this

leads to an equation

(2r0 + b0)r1 =
l

4πρ0

∫ 2π

0

km(x) sin(lx)dx +
l2

8πρ2
0

∫ 2π

0

ks(x) cos2(
lx

2
)dx (8.36)

For values of r0 = s±l (0), where s±l (0) is given by (8.22), the equation above

leads to an expression for perturbation in the two eigenvalues. We denote these

perturbations as r±1 . For r0 = s+
k (0), we have from from Lemma (8.5.2) that

b0 >> |2r0| when l << lc, so that

r+
1 ≈

l

4πρ0b0

∫ 2π

0

km(x) sin(lx)dx +O(
1

N2
). (8.37)

Note that we have dropped the second integral on the right hand side of (8.36)

because 1
ρ2
0

= O(1/N2) for large N . For r0 = s−k (0), 2r0 ≈ −2b0 for l << lc and

r−1 ≈ −
l

4πρ0b0

∫ 2π

0

km(x) sin(lx)dx +O(
1

N2
). (8.38)

Note that

r+
1 + r−1 = 0.

Putting the formulas for the perturbation to the eigenvalues (8.37) and (8.38)

in (8.30), we get

s+
l (ε) ≈ s+

l (0)− ε l

4πb0ρ0

∫ 2π

0

km(x) sin(lx)dx+O(ε2) +O(
1

N2
),

s−l (ε) ≈ −2b0 + ε
l

4πb0ρ0

∫ 2π

0

km(x) sin(lx)dx+O(ε2) +O(
1

N2
).

Since s+
l (0) = O( 1

N2 ) for l < lc (Lemma 8.5.2) and ρ0 = N
2π

, the result follows.

Remark 8.6.1. The asymptotic formulae for s+
l in Corollary 8.6.1 and Corol-

lary 8.6.2 are valid only in the limit ε → 0. However, one would like to be able

to use them with somewhat larger values of ε to realize the benefit of mistuning.
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Figure 8.7. The real parts of six eigenvalues (closest to 0) of the closed loop platoon

dynamics for Scenario I, and their comparison with the PDE eigenvalues with

Dirichlet-Dirichlet boundary conditions, for mistuned gains kf (x) = 1−0.1 sin(x),

kb(x) = 1 + 0.1 sin(x) and b(x) ≡ 0.5. As predicted by the S-L theory, the least

stable eigenvalue stays the least stable, although eigenvalues that were more stable

merge with it as N increases.

To do so, one has to preclude the possibility of “eigenvalue cross-over,” i.e., of the

second (s+
2 ) or some other marginally stable eigenvalue from becoming the least

stable eigenvalue in the presence of mistuning. It turns out that such a cross-over

is ruled out as a consequence of the Strum-Liouville (S-L) theory for the elliptic

boundary value problems. The standard argument relies on the positivity of the

eigenfunction corresponding to s+
1 ; the reader is referred to [171] for the details.

Figure 8.7 verifies this numerically by depicting the six eigenvalues closest to 0

(for both the PDE and the discrete platoon) as a function of N when mistuning

is applied.

282



8.6.2 Eigenvalue optimization

For relatively large values of ε, the mistuning profiles obtained in the previous

section may not be optimal. One therefore needs to find the optimal mistuning

gain profiles that minimize the least stable eigenvalue of the PDE (8.26). It

can be shown in a straightforward manner that the least-stable eigenvalue of the

PDE (8.26) has the following property:

s+
1 →

λ1

b0
as N →∞, (8.39)

where λ1 is the principal (with largest real part) eigenvalue of L(ε) (defined

in (8.27)). Thus, in the limit of large number of vehicles, the problem of min-

imizing the least stable eigenvalue of the PDE (8.26) is equivalent to minimizing

λ1, the principal (with largest real part) eigenvalue of L(ε) by choosing the func-

tions km(s), ks(x) ∈ L2. By a standard argument in S-L theory, λ1 is real with a

positive eigenfunction [171].

For problem of minimizing λ1 to be well-posed, an additional constraint on

km(x) and ks(x) is needed. In the following, we assume ks(x) ≡ 0 and impose a

constraint
∫ 2π

0

|km(x)|2dx = 1. (8.40)

ks(x) = 0 is assumed for the sake of simplicity of the presentation and because

it appears as a coefficient ks(x)
N2 . Any improvement due to ks(x) alone is O( 1

N2 )

while km(x) can potentially deliver an O( 1
N

) shift in eigenvalue location. This is

also reflected in estimates obtained using the perturbation methods (see (8.36)).

Thus, the problem of minimizing the least stable eigenvalue of the PDE (8.26) is

converted to the following optimization problem:

min
{ks(x)≡0,

R 2π

0 |km(x)|2dx=1}
λ1. (8.41)
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Even with km(x) alone, the optimization of a non-symmetric eigenvalue prob-

lem (as in our case) is challenging with limited theory for guidance; see section 16

of the review paper [172] on eigenvalue optimization. As a first step, we relax the

optimization problem by replacing the operator L(ε) by its symmetric component:

Ls(ε)η = (
L + L∗

2
)η = a2

0

d2η

dx2
− ε

2ρ0
k′m(x)η, (8.42)

where L∗ is the adjoint of L and k′m(x) := dkm

dx
(x). Let λs

1 denote the principal

eigenvalue of L∗. The following lemma gives the relationship between λ1 and λs
1.

Lemma 8.6.1. Let λ1 denote the principal eigenvalue of the operator L in (8.27)

and λs
1 denote the principal eigenvalue of the symmetric operator Ls in (8.42).

Then

λ1 ≤ λs
1. �

Proof. Let λ1 be the principal eigenvalue and φ(x) be the corresponding positive

eigenfunction of the non-symmetric problem:

a2
0

d2φ

dx2
+ ε

km(x)

ρ0

∂φ

∂x
= λ1φ.

Multiplying by φ and integrating by parts, we obtain

−a2
0

∫ 2π

0

(
dφ

dx

)2

dx− ε

2ρ0

∫ 2π

0

k′m(x)φ2dx = λ1

∫ 2π

0

φ2dx.

We have

λ1 ≤ max
φ>0

[

−a2
0

∫ (
dφ
dx

)2
dx− ε

2ρ0

∫
k′m(x)φ2dx

]

∫
φ2dx

= λs
1,

where the last equality follows from the variational characterization of the princi-

pal eigenvalue for a symmetric elliptic problem.

Instead of the original eigenvalue optimization problem (8.41), we pose and

solve the following simpler optimization problem:

min
{km(x):

R

|km|2dx=1}
λs (8.43)
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where λs is the principal (largest) eigenvalue of Ls:

a2
0

d2φ

dx2
− ε

2ρ0
k′m(x)φ = λsφ (8.44)

with Dirichlet boundary conditions (8.16). Because of Lemma 8.6.1, the solution

to this problem provides an upper bound on the solution to (8.41). Among the two

roots of the characteristic equation s2 + b0s− λs = 0, the one closer to 0 – which

we denote by (s+
1 )s – is the least stable eigenvalue of the mistuned symmetric

PDE

∂2ṽ

∂t2
+ b0

∂ṽ

∂t
= L∗(ε)ṽ. (8.45)

In the symmetric and non-symmetric cases respectively,

(s+
1 )s → λs

b0
as N →∞, and s+

1 →
λ

b0
as N →∞.

From Lemma 8.6.1, we get (s+
1 )s ≤ s+

1 in the limit of large N .

The calculations leading to formulas for the principal eigenvalue, eigenfunction,

and the optimal mistuning gain profile for the symmetric PDE are presented in

Section 8.9. Figure 8.8 presents the optimum mistuning profiles for the symmetric

PDE for three different values of ε. Before presenting numerical validation of

eigenvalues, we summarize the main conclusions of the optimization calculations

in Section 8.9:

1. The optimization calculations provide a rigorous O( 1
N

) bound on the least

stable eigenvalue of the symmetric problem for non-vanishing values of mis-

tuning amplitude ε. Using Lemma 8.6.1, this leads to an O( 1
N

) bound for

the least stable eigenvalue of the non-symmetric pde and hence the discrete

platoon.
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2. The results of the optimization calculation are also shown to be consistent

with the results of perturbation analysis. In particular, the optimal mistun-

ing profile tends to the beneficial sinusoidal profile (see Corollary 8.6.1) in

the limit ε→ 0.

3. Using a symmetry technique, the optimal mistuning profile for scenario II

is shown to be a stretched (by factor of 2) version of the optimal mistuning

profile for the scenario I case. A formula linking the two is given which helps

generalize the results of perturbation analysis to non-vanishing values of ε.

Figure 8.9 shows the trend of the least stable eigenvalue of the symmetric

PDE with the optimum mistuning profile k∗m(x), and compares it with the least

stable eigenvalues of the non-symmetric PDE (8.26) under both sinusoidal and

k∗m(x) mistuning. It is seen from the figure that with the mistuning profile k∗m(x),

the least stable eigenvalue for the non-symmetric PDE is smaller (more to the

left) than its symmetric counterpart. This is consistent with the conclusion of

Lemma 8.6.1. However, numerically the optimal mistuning profile obtained for

symmetric PDE was found to be sub-optimal for the non-symmetric PDE corre-

sponding to the discrete platoon. In particular, for the values of ε tested and shown

in the figures, the sinusoidal mistuning profile was seen to provide greater damp-

ing for the discrete platoon. The numerically computed least stable eigenvalue of

the symmetric PDE with the optimal mistuning profile matches the formula for

the same derived in the appendix and it approaches 0 as O( 1
N

); see Figure 8.9.

In all cases, eigenvalues of the PDE (8.26) closely matched the discrete platoon

eigenvalues.
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8.7 Simulations

We now present results of a few simulations that show the time-domain im-

provements – manifested in faster decay of initial errors – with the mistuning-based

design of control gains. Simulations were carried out for a platoon of N = 20 ve-

hicles with scenario I, i.e., with fictitious lead and follow vehicles. The desired gap

was ∆ = 1 and desired velocity was Vd = 5. The initial velocity of every vehicle

was chosen as the desired velocity and the initial position of the ith vehicle was

chosen as Zi(0) = i∆− 0.5 for i = {1, . . . , N}.

Figure 8.10 depicts the time-histories of the absolute and relative position

errors of the individual vehicles with a symmetric bidirectional control, where the

control gains were chosen as k
(f)
i = k

(b)
i = 1 and bi = 0.5 for i = {1, . . . , N}. The

position errors shown are un-normalized, i.e., absolute position error of the ith

vehicle is Zi − Zd
i and the relative position error is Zi−1 − Zi −∆.

Figure 8.11 depicts the time-histories of the absolute and relative position

errors for the platoon with mistuned controller gains. The mistuning profile was

chosen according to Corollary 8.6.1 so that maximum and minimum gains over all

vehicles is within ±10% of the nominal value. On comparing Figures 8.10 and 8.11,

we see that the errors in the initial conditions are reduced faster in the mistuned

case compared to the nominal case. These observations are consistent with the

improvement in the closed-loop stability margin with the mistuned design.
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Figure 8.10. Simulations with symmetric bidirectional control. Time histories of

the absolute and relative position errors of the vehicles in a platoon with symmetric

bidirectional control (scenario I) are shown.
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Figure 8.11. Simulations with mistuned bidirectional control. Time histories of

the absolute and relative position errors of the vehicles in a platoon (scenario I)

with mistuned bidirectional control are shown. Controller gains were chosen as

k
(f)
i = 1− 0.1 sin(yd

i ), k
(b)
i = 1 + 0.1 sin(yd

i ), where yd
i defined in (8.2).
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8.8 Comments and open problems

Although the model is derived under the assumption of large number of vehi-

cles N , in practice it provides quantitatively correct predictions for the discrete

platoon dynamics even for relatively small values of N . The advantage of the

PDE formulation is reflected in the ease with which the spectrum can be obtained

even with non-symmetric boundary conditions. Finally, certain important aspects

such as the beneficial nature of forward-backward asymmetry in control gains as

revealed by the PDE is difficult to see with the discrete platoon model.

A promising research direction is exploring the use of PDE-based models for

design and analysis of decentralized controllers for a fleet of vehicles in 2 or 3 spa-

tial dimensions. Another promising direction is the study of formations with time-

varying topology through a continuum model. Multi-agent coordination problems

in which the interconnections between agents may change with time are difficult to

analyze due to their time-varying nature. Perhaps an “aggregate” view afforded

by a continuum approximation – in the form of an appropriate PDE – can be

useful in analysis. However, how to derive the governing PDE for such a situation

and how to validate it is not clear.

We did not investigate in this chapter if the mistuning based design reduces

the amplification of disturbance that is typically seen in automated platoons. In

light of the results in Chapter 7 this is an important problem and needs to be

studied in the future.
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8.9 Proofs

In this section, we present the solution of the eigenvalue optimization prob-

lem (8.43). The optimization is based upon a method originally due to Keller [173].

Assume k∗m(x) minimizes the largest eigenvalue and is thus the solution. After

Keller, we introduce a family of functions km(x, δ) with k∗m(x) = km(x, 0) to con-

struct a differential characterization of this optimal. For each δ, the principal

eigenvalue and the eigenfunction are given by λs(δ) and φ(x, δ) respectively. Dif-

ferentiating (8.44) with respect to δ and evaluating at δ = 0 gives

a2
0

d2φδ

dx2
− ε

2ρ0

k′m(x)φδ −
ε

2ρ0

(k′m)δ(x)φ = λsφδ,

where (k′m)δ(x) = ∂(k′

m)(x)
∂δ
|δ=0 and φδ = ∂φ

∂δ
|δ=0. Multiplying by φ, integrating, and

using (8.44) gives
∫ 2π

0

(k′m)δ(x)φ
2dx = 0 (8.46)

On differentiating the constraint (8.40), we obtain

∫ 2π

0

km(x)(km)δ(x)dx = 0. (8.47)

Since (km)δ(x) represents an arbitrary perturbation about the optimal, the two

equations (8.46)-(8.47) imply that the optimal mistuning pattern is given by

k∗m(x) = −Cφdφ
dx
, (8.48)

where C is some constant. It follows that

k′m(x) = −C
2

d2(φ)2

dx2

and substituting this in (8.44), one obtains a nonlinear BVP

a2
0φ

′′ +
εC

2ρ0

[
φφ′′ + (φ′)2

]
φ = λsφ. (8.49)
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with Dirichlet boundary conditions (8.16). The principal eigenfunction of this

problem then defines the optimal mistuning profile k∗m(x) by (8.48).

Before presenting the details of the calculations, we make two observations.

One, the nonlinear BVP admits a symmetry whereby if φ(x) is an eigenfunction

then so is φ(2π − x). Now, the principal eigenfunction of any elliptic eigenvalue

problem is known to be unique (see Ch. 15 of [174]). This implies that φ(x) =

φ(2π − x), and at x = π

dφ

dx
(π) = 0. (8.50)

Thus, the solution φ(x) of (8.49) also provides for the principal eigenfunction with

the Neumann-Dirichlet boundary conditions (8.16). It is given by φ( x
2

+ π) and

the optimal profile is obtained as before by using (8.48).

The second observation pertains to a comparison with the results obtained

using perturbation methods. To do so, we consider the ε → 0 limit first. In this

limit, the principal eigenfunction (of (8.49)) is given by φ = sin(x
2
). Using (8.48),

one obtains the optimal mistuning pattern for the limiting case

k∗m(x) = −C sin(x),

where C = 1
π

satisfies the norm constraint. This is consistent with the optimal

mistuning profile obtained using perturbation methods. For small ε, this also

provides an estimate of the eigenvalue

λs = −a
2
0

4
− ε

16πρ0
+O(ε2),

which using (8.39) yields the result of Corollary 8.6.1. Finally using the sym-

metry arguments, the principal eigenfunction for the Neumann-Dirichlet case is

given by is given by φ(x
2

+ π) = cos(x
4
) and using (8.48), the optimal mistuning
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profile is k∗m(x) = C sin(x
2
). This too is consistent with the results obtained using

perturbation methods (see Corollary 8.6.2).

In order to compute the optimal mistuning profile, the ODE (8.49) is first

simplified to

φx

λs − εC
2ρ0

(φx)2
dφx =

φ

a2
0 + εC

2ρ0
φ2
dφ,

that on integration gives

λs − εC

2ρ0

φ2
x =

D

a2
0 + εC

2ρ0
φ2
, (8.51)

where D is a constant of integration. Using (8.50), we get D = λs
(

a2
0 + εC

2ρ0
y2

0

)

where y0 := φ(π). As a result, (8.51) becomes

[

1 +
εC

2ρ0a
2
0

φ2(x)

] [

1− εC

2ρ0λs
(
dφ

dx
)2

]

=

[

1 +
εC

2ρ0a
2
0

y2
0

]

,

where y0 = φ(π). After some manipulation, this equation yields the integral

a0√
−λs

∫ φ(x)

0

[
1 + εC

2ρ0a2
0
y2

y2
0 − y2

] 1
2

dy = x. (8.52)

The solution to this integral requires Elliptic functions of the second kind. In

particular, we propose a co-ordinate change

φ = y0 sin(
θ

2
), θ ∈ [0, 2π]. (8.53)

and define β := Cy2
0. Using (8.52), θ is a solution to an implicit Elliptic integral

equation
∫ θ

0

[

1 +
εβ

2ρ0a
2
0

sin2 θ

2

] 1
2

dθ =
2
√
−λs

a0

x, (8.54)

where substituting θ = π and using (8.53), one obtains an implicit relationship

between β and λs:

∫ 2π

0

[

1 +
εβ

2ρ0a2
0

sin2 θ

2

] 1
2

dθ =
4π
√
−λs

a0
, (8.55)
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In the θ co-ordinate,

dφ

dx
=

[
y0

2
cos(

θ

2
)

]
dθ

dx
=
y0

√
−λs

a0
cos(

θ

2
)

[

1 +
εβ

2ρ0a2
0

sin2 θ

2

]− 1
2

, (8.56)

where dθ/dx is obtained from (8.54). Using (8.48), (8.53), (8.55) and (8.56), we

get the optimal pattern in the θ co-ordinate as

k∗m(θ) = −A(β) sin(θ)

[

1 +
εβ

2ρ0a2
0

sin2 θ

2

]− 1
2

, (8.57)

where

A(β) =
β

8π

∫ 2π

0

[

1 +
εβ

2ρ0a2
0

sin2 θ

2

] 1
2

dθ.

Now use the constraint
∫ 2π

0
k2

mdx = 1 (which implies
∫ 2π

0
km(θ)2(dx/dθ)dθ = 1) to

deduce the unknown constant β:

2π
A2(β)

∫ 2π

0

[

1 + εβ
2ρ0a2

0
sin2( θ

2
)
]

dθ

∫ 2π

0

sin2(θ)

1 + εβ
2ρ0a2

0
sin2( θ

2
)
dθ = 1

The eigenvalue λs is then obtained from (8.55), θ(x) is obtained from (8.54),

and the optimal mistuning pattern in thex-coordinate, k∗m(x), is deduced after

substituting θ(x) in (8.57). Figure 8.8 depicts a few typical optimal mistuning

patterns for different values of ε. Consistent with the results obtained using the

perturbation method, the optimal mistuning pattern is close to the sinusoidal

pattern for small values of ε. Finally using the eigenvalue formula (8.55) and

doing a little reduction, one also sees that the least stable eigenvalue approaches

0 as O( 1
N

) for ε > 0. Numerical evaluations of this exact formula appear in

Figure 8.9.
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Chapter 9

Summary

The estimation and control problems examined in this dissertation share the

common attribute of being defined over graphs. The other common features are

that only relative measurements are available. The underlying theme of our in-

vestigations is the effect of interconnect structure in large-scale systems. An im-

portant lesson learned from the results described here is that interconnection

topology dictates, to a large extent, the achievable performance. Moreover, the

matrix-valued effective resistance – introduced in this dissertation – has proven to

be useful in analyzing the scalability of both estimation and control algorithms.
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generalized electrical network, 105
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chronization protocol. In ACM Conference on Embedded Networked Sensor

Systems (SenSys). 2004.

[57] F. Chenavier and J. L. Crowley. Position estimation for a mobile robot using

306



vision and odometry. In IEEE Conference on Robotics and Automation.

1992.

[58] S. Shoval and J. Borenstein. Measuring the relative position and orientation

between two mobile robots with binaural sonar. In Presented at the ANS

9th International Topical Meeting on Robotics and Remote Systems. 2001.

[59] J. Borenstein, H. R. Everett and L. Feng. Where am i? sensors and methods

for mobile robot positioning. 1996. Contributing authors: S. W. Lee and

R. H. Byrne.

[60] C. Godsil and G. Royle. Algebraic Graph Theory . Graduate Texts in Math-

ematics. Springer, 2001.

[61] W.-K. Chen. Applied Graph Theory . North Holland Publishing Company,

1971.

[62] D. G. Luenberger. Optimization by Vector Space Methods. John Wiley and

Sons, 1969. ISBN 0471-18117X.
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